
                          CONTENTS

Preface and Summary

Preface ..........................................................v
Executive Summary.................................................1

Chapter 1  

1   The Impact of Biology on Mathematics .........................7
    1.1  Accomplishments of the Past ............................12
         1.1.1  Statistics and Stochastic Processes..............12
         1.1.2  Dynamical Systems Theory.........................16
         1.1.3  Nonlinear Partial Differential and  
                Functional Equations.............................19
         1.1.4  Classical Analysis...............................21
         1.1.5  Topology and Geometry............................23
    1.2  Grand Challenges........................................24

Chapter 2

2   The Impact of Mathematics on Cellular and Molecular Biology .27
    2.1  Accomplishments of the Past.............................28
         2.1.1  DNA Structure....................................28
         2.1.2  Macromolecular Sequences.........................30
         2.1.3  Genetic Mapping..................................31
         2.1.4  Cell Motility....................................32
         2.1.5  Structural Biology...............................32
    2.2  Grand Challenges........................................34
         2.2.1  Structural Analysis of Macromolecules............35
         2.2.2  Molecular Dynamics Simulation....................36
         2.2.3  Drug Design......................................37
         2.2.4  Nucleic Acid Sequence and  
                Structural Analyses of Nucleic Acids.............38
         2.2.5  Structural Analysis of Cells.....................39

Chapter  3
         
3   The Impact of Mathematics on Organismal Biology..............41
    3.1  Accomplishments of the Past.............................41
    3.2  Grand Challenges........................................43
         3.2.1  Complex Hierarchical Biological Systems..........43
                  Neuroscience...................................44
                  Immunology.....................................48
                  Genomic regulatory networks....................51



                  Developmental biology..........................53
         3.2.2  Dynamic Aspects of Structure−Function  
                Relationships....................................56

Chapter 4

4   The Impact of Mathematics on Ecology and  
    Evolutionary Biology.........................................60
    4.1  Accomplishments of the Past.............................62
         4.1.1  The Synthesis of Population Genetics and
                Evolutionary Biology.............................63
         4.1.2  Autecology.......................................64
         4.1.3  Population Biology...............................65
         4.1.4  Epidemiology of Infectious Diseases..............67
         4.1.5  Fisheries Management.............................68
         4.1.6  Community and Ecosystem Processes................68
    4.2  Grand Challenges........................................70
         4.2.1  Global Change....................................71
         4.2.2  Molecular Evolution..............................71
         4.2.3  The Problem of Scale.............................73

Chapter 5

5   Modes and Levels of Support..................................77
    5.1  Research Support........................................77
    5.2  Infrastructure..........................................78
    5.3  Training................................................78
         5.3.1  Precollege and Undergraduate Education...........78
         5.3.2  Graduate and Postdoctoral Training...............79
         5.3.3  Senior Established Investigators.................80
    5.4  Human Resources.........................................80

References.......................................................82

Appendices

Appendix 1      Steering Committee

Appendix 2      List of Workshop Attendees

Appendix 3      Research Opportunities in Computational Biology

Appendix 4      Training Computational and Mathematical Biologists



.



               MATHEMATICS AND BIOLOGY: THE INTERFACE

                    CHALLENGES AND OPPORTUNITIES

                        JUNE 1992

Workshop Organizer and Editor:

   Simon A.Levin.......                    Cornell University

Editorial Assistant:                            NSF Associate:

Colleen S. Martin, Cornell University       Peter Arzberger

Contributions from the participants of working groups edited by:

     John Guckenheimer.........................Cornell University
     Daniel Kersten.......................University of Minnesota
     David T. Kingsbury..............George Washington University
     Marc Mangel .................University of California, Davis
     Michael Reed........................         Duke University
     Wendy Silk...................University of California, Davis

This work was supported by a grant from the National science  
Foundation (DMS 89−10353) to Cornell University and by the  
Associate Director for Health and Environmental Research, Office  
of Energy Research, of the U.S. Department of energy under  
Contract No. DE−AC03−76SF00098.



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                                PREFACE

        THE interface between mathematics and biology has long been a rich  
area of research, with mutual benefit to each supporting discipline.  
Traditional areas of investigation, such as population genetics, ecology,  
neurobiology, and 3−D reconstructions, have flourished, despite a rather  
meager environment for the funding of such work. In the past twenty  
years, the kind and scope of such interactions between mathematicians  
and biologists have changed dramatically, reaching out to encompass areas  
of both biology and mathematics that previously had not benefited. At the  
same time, with the closer integration of theory and experiment, and the  
increased reliance on high−speed computation, the costs of such research  
grew, though not the opportunities for funding. The perception became  
reinforced, both within the research community and at funding agencies,  
that although these interactions were expanding, they were not doing so at  
the rate necessary to meet the opportunities and needs.  

        To help foster a broader understanding of this interface, and to  
provide an analysis of the most promising and productive areas for  
expanded activity, the National Science Foundation sponsored a workshop  
to explore the current and future trends at the interface between  
mathematics and biology. The workshop, which was held in Washington,  
DC, between April 28 and May 3, 1990, drew together a broadly based  
group of researchers to synthesize conclusions from a group of working  
papers and extended discussions. The result is the report presented here,  
which we hope will provide a guide and stimulus to research in  
mathematical and computational biology for at least the next decade. The  
report identifies a number of grand challenges, representing a broad  
consensus among the participants.  

        The report documents the participants’ enthusiastic conclusion that  
mathematical and computational approaches are essential to the future of  
biology and that biological applications will continue to contribute to the  
vitality of mathematics, as they have since the days of Vito Volterra. The  
goal of this workshop report is to share with the scientific community our  
convictions about the promise of this activity and further to inform the  
broader community and relevant institutions about the potential for  
exciting growth and productivity in this interdisciplinary field and the  
need for nurturing it. As with other interdisciplinary efforts, it must rest  



on strong disciplinary foundations, but not be constrained by the narrow  
customs and standards of any particular discipline.  

        We thank the steering committee and the participants for helping to  
make the meeting such a success. The plans and format were developed  
together with this committee and implemented with the invaluable  
assistance of Colleen Martin at Cornell University and Peter Arzberger and  
John Wooley of the National Science Foundation. In addition to the  
attendees acknowledged in Appendix 1, three individuals at the National  
Science Foundation deserve special thanks for their contributions to the  
development and refinement of the report− Deborah Lockhart, DeLill  
Nasser, and Judith Sunley. Each contributed time, attention, and  
constructive additions to the project and to the report. Sylvia Spengler and  
the Technical Information Department at Lawrence Berkeley Laboratory  
sheperded the manuscript to publication. The workshop and report were  
supported by a grant from the National Science Foundation (DMS  
89−10353) to Cornell University (Simon Levin, Principal Investigator).  
Publication of the report was supported by the Associate Director for  
Health and Environmental Research, Office of Energy Research, of the U.S.  
Department of Energy under Contract No. DE−AC03−76SF00098.  

Simon Levin, Cornell University and Princeton  
University  
David Kingsbury, George Washington University  

June 1992  
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                          EXECUTIVE SUMMARY

        Motz (1987) divides the history of science into three  
broad time periods:  the era before Galileo and Newton, the  
period 1600−1900, and the modern period.  "Why," he asked, "did  
(the Greeks) accomplish so little?" in the first period, given  
their exceptional intellectual capabilities?  It was because  
"Theirs was not a systematic study of the nature of things in  
which experiment and theory went hand in hand but a series of  
unrelated speculations that stemmed from no basic principles and  
were never tested."  For Motz, modern science began with Galileo  
and Newton:  "Newton’s contributions to science and mathematics  
were not independent of each other Ñ they went hand in hand, for  
his scientific pursuits forced him to invent the mathematical  



tools that enabled him to solve the problems presented by the  
physics."   

        This is the stage in which biology finds itself today,  
poised for the phase transition that comes with the total  
integration of mathematical and empirical approaches to a  
subject.  Many branches of biology are virtually devoid of  
mathematical theory, and some must remain so for years to come.   
In these, anecdotal information accumulates, awaiting the  
integration and insights that come from mathematical  
abstraction.  In other areas, theoretical developments have run  
far ahead of the capability of empiricists to test ideas,  
spinning beautiful mathematical webs that capture few biological  
truths.  This report eschews such areas, and instead focuses on  
those where the separate threads are being woven together to  
create brilliant tapestries that enrich both biology and mathematics.   

        The interface between mathematics and biology presents challenges  
and opportunities for both mathematicians and biologists.  Unique  
opportunities for research have surfaced within the last ten to twenty  
years, both because of the explosion of biological data with the  
advent of new technologies and because of the availability of advanced  
and powerful computers that can organize the plethora of data.  For  
biology, the possibilities range from the level of the cell and  
molecule to the biosphere.  For mathematics, the potential is great in  
traditional applied areas such as statistics and differential  
equations, as well as in such non−traditional areas as knot theory.  
  
        This report explores some of the opportunities at the interface  
between biology and mathematics.  To mathematicians, the report argues  
that the stimulation of biological application will enrich the  
discipline of mathematics for decades or more, as have applications  
from the physical sciences in the past.  To biologists, the report  
underscores the power of mathematical approaches to provide insights  
available in no other way.  To both communities, the report  
demonstrates the ferment and excitement of a rapidly evolving field.   

        With the advent of new types and amounts of data and with new  
technologies, new fields of research have appeared and existing fields  
have been changed beyond recognition.  Over 7,000,000 nucleotides of  
DNA per year can be sequenced and, at least until now, such sequencing  
has been done around and through regions that the investigators have  
judged to be of biological interest.  Thus, sequence comparisons often  
provide clues to biological function.  The secondary and tertiary  
structure of both DNA and RNA can be analyzed, and such analysis often  
is conducted with the close collaboration of mathematicians.  At the  
cellular level, recombinant technology has made it possible to ask  
specific questions about cell growth, cell differentiation and pattern  
formation, and to interface with old and new mathematical theories.   
Similar excitement attends the problem of how cells communicate with  



each other and with their environment; the dynamics of cells,  
channels, and neural networks; and the behaviors of populations and  
aggregations of cells and organisms.   

        The ways in which whole fields of research are approached have  
changed.  For example, whereas population genetics and evolutionary  
biology were fields historically concerned largely with inferring  
process from pattern, the explosion of knowledge and the cellular and  
molecular levels have permitted complementation of that approach  
with that in which one begins from knowledge of processes at the  
micro level.  DNA sequence data make possible a different kind  
of analysis of patterns and processes at higher levels of  
organization than was possible previously from fossil data  
alone.  Mathematical approaches allow the use of genetic data to  
analyze multi−locus traits, which are so important, for example,  
to plant breeding, and have made possible a much more  
quantitative approach to such issues.  And perhaps the greatest  
challenge for computational and mathematical biology will come  
in dealing with the problems of global change, biological  
diversity, and sustainable development, which will require the  
integration of enormous data sets across disparate scales of  
space, time, and organization.   

        As this data explosion is taking place, newer, faster, more  
powerful machines have become available in the form of both  
supercomputing centers and networked work stations.  In many  
instances, dedicated hardware has outperformed the  
supercomputers and is inexpensive enough to be afforded by many  
scientists.  One such example is a chip for sequence  
comparisons; other examples come from neural networks.  The  
development of national and international networks allows  
immediate access to data, to software, to ideas, and to  
supercomputers.  These changes in computation have enabled  
molecular geneticists to store their DNA sequence data, to  
search for sequence matches, and to do multiple sequence  
alignments.  Developmental biologists can store cell lineage  
data and model morphogen gradients.  Molecular evolutionists can  
reconstruct larger phylogenies.  Ecologists can endeavor to  
relate global level processes controlling climate and the  
distribution of greenhouse gases to biogenic and other  
mechanisms at the cell and leaf level.  In all of these  
examples, mathematics and algorithm development are intrinsic to  
success.   

        The interaction between biology and mathematics has been a  
rich area of research for more than a century.  Statistics and  
stochastic processes have their origins in biological questions.   
Galton invented the method of correlation, motivated by  
questions in evolutionary biology.  Fisher’s work in agriculture  
led to the analysis of variance.  The attempt to model the  



success (survival) over many generations of a family name led to the  
development of the subject of branching processes; more recently, the  
compilation of DNA sequence data led to Kingman’s coalescence model  
and Ewens’ sampling formula.  In the area of classical applied  
mathematics, biological applications have stimulated the study of  
ordinary and partial differential equations fundamentally, especially  
regarding problems in chaos, pattern formation, and bifurcation  
theory.   

        Perhaps more fundamentally, mathematical approaches have long  
been central to biology.  Before capillaries were discovered, Harvey  
used a mathematical model to suggest that blood circulates.   
Mathematical formulations are so basic to the study of ecology and  
evolutionary biology that they are fundamentally integrated into the  
training of every  scientist.  Volterra’s early analysis of simple  
models elucidated the mechanisms underlying the fluctuations of  
natural populations; modern work on spatial pattern is proving  
critical to conservation biology.  Mathematical models have played a  
central role as well in managing the spread of infectious disease,  
including the development of vaccination criteria and studies of the  
spread of AIDS.  The Luria−Delbruck fluctuation analysis, by a simple  
but elegant experiment based upon a mathematical concept, established  
that mutation was independent of selection, and mathematical arguments  
have been central to the analysis of the recent and potentially  
revolutionary suggestion that in certain situations bacteria mutate  
non−randomly in response to their environment.   

        In molecular biology, mathematical and algorithmic developments  
have allowed important insights, for example, recognition of the  
unexpected homology between an oncogene product and a growth factor  
that forms the basis of the molecular theory of carcinogenesis.   
Statistical linkage analysis helped locate the cystic fibrosis gene.   
An understanding of the topology of DNA has been enhanced greatly by  
the close cooperation of biologists and mathematicians.  Classical  
analysis has played a central role in image reconstruction.  Radon’s  
techniques, first developed in 1917, formed the centerpiece of  
computerized axial tomography that led to a Nobel prize in 1979.   

        At the organismal level, numerous triumphs have occurred.   
Mathematical modeling revealed the cause of ventricular fibrillation.   
Hodgkin and Huxley theorized that macroscopic current might be  
generated by molecular pores Ñ ion channels that were proven later to  
exist.  Navier−Stokes equations for flow through small bristled  
appendages have shown how the geometry permits the appendages of  
aqueous organisms to function either as paddles or rakes.   

        The primary purpose for encouraging biologists and  
mathematicians to work together is to investigate fundamental  
problems that cannot be approached only by biologists or only by  
mathematicians.  If this effort is successful, future years may  



produce individuals with biological skills and mathematical  
insight and facility.  At this time such individuals are rare;  
it is clear, however, that a greater percentage of the training  
of future biologists must be mathematically oriented.  Both  
disciplines can expect to gain by this effort.  Mathematics is  
the "lens through which to view the universe" and serves to  
identify the important details of the biological data and  
suggest the next series of experiments.  Mathematicians, on the  
other hand, can be challenged to develop new mathematics in  
order to perform this function.

        Flexibility by the funding agencies to the needs at this  
interface is essential.  Cross−disciplinary teams of researchers  
should be encouraged and appropriate methods for review of  
proposals should be developed.  Methods of selection and  
training of interdisciplinary individuals at an early stage of  
their development in the interface of these disciplines should  
be devised.  Meetings and workshops to explore as yet unthought  
of ways in which the two disciplines can serve to amplify each  
other should be supported.

Grand Challenges

Genomics

Attention to the human genome project and its great potential  
often obscures the fact that theoretical work is essential to  
efforts at sequencing and mapping all genomes, human and  
non−human, animal and plant.  Without the mathematical and  
statistical underpinnings and computational advances, efforts  
directed to sequencing and mapping will be severely limited;  
with these methods, we are poised to make dramatic advances.   
Intraspecific and interspecific comparative analyses of the genomes of  
diverse organisms can aid in finding solutions, and also increase our  
understanding of the natural world.   

Global Change

No problem is more compelling, from the viewpoint of importance to  
life as we know it, than that of global warming.  Current estimates  
are that changes in the concentration of greenhouse gases are  
occurring at a rate far more rapid than anything we have experienced  
in the geological record, changes that could lead to equally rapid  
changes in climate.  Furthermore, increases in pollutants of various  
kinds and depletion of our resource base make the analysis of these  
changes and their effects upon all life forms of prime importance.  We  



must improve our methods to describe, to predict, and to identify  
causes.  In all of these, a fundamental theoretical problem involves  
the relationships between processes at very different spatial,  
temporal, and organizational scales.  Closely related problems of  
surpassing importance are those associated with biodiversity and  
sustainable development.

Molecular Evolution

The understanding of the evolution of all life forms is critically  
dependent on our ability to analyze the historical record, and to  
reconstruct phylogenetic relationships among species.  The current  
status of the field offers few methods for this reconstruction, and  
only one method provides a measure of uncertainty in the final tree.   
The difficulty of reconstruction grows exponentially with the number  
of initial data points, and efforts at resolution pose challenging  
mathematical and computational problems.  Computational and  
algorithmic advances can speed up immeasurably the development of the  
subject.   

Organismal Structure−Function Relationships

The relationship between the structure and function of an organism is  
a central theme of classical biology.  Successes include the  
analysis of functional morphology of organisms and their parts,  
such as tree branches, and the analysis of fluid flow through  
and past organisms.  The field of functional morphology is a  
centerpiece of modern biology, and advances in the subject offer  
hope not only for understanding the biological world, but also  
for improving the human condition.  Theoretical and  
computational advances already have been made in analyzing  
artificial heart valves.  The potential is great for extending  
these approaches to other human and animal organ systems.   

Complex Hierarchical Biological Systems

At every level of organization, biological systems are complex  
hierarchies in which ensembles of lower level units become the  
units in higher order ensembles.  The analysis of complex  
hierarchical systems therefore represents one of the most  
important open areas in biology.  At both the molecular and  
cellular level, the components of biological systems are being  
revealed by modern experimental methodology.  The organization  
and integration of these details into a functional biological  
system will require the techniques of the mathematician as well  
as the data of the biologist.  Problems of this sort are at the  
core of genetics, neurobiology, developmental biology and  



immunology.  Similar problems exist in understanding how  
individuals are organized into populations, and populations into  
communities.   

Structural Biology

Structural biology includes the analysis of the topological and  
geometric structure of DNA and proteins.  It also includes  
molecular dynamics simulation and drug design.  Basic work must  
be done related to the structure and folding of crystalline and  
hydrated proteins.  For many proteins, the structure is dictated  
by the sequence, so this area is closely related to genomics.   
Molecules are in continual motion in nature, but NMR and X−ray  
crystallography necessarily involves snapshots.  Mathematical  
and computational methods are essential to complement experimental  
structural biology by allowing the addition of motion to molecular  
structures.

Mathematical Theories

A number of fundamental mathematical issues cut across all of these  
challenges.   

        (1)     How do we incorporate variation among individual units in  
                nonlinear systems?   
        (2)     How do we treat the interactions among phenomena that occur  
                on a wide range of scales, of space, time, and organizational  
                complexity?   
        (3)     What is the relation between pattern and process?   

        It is in the analysis of these issues that mathematics is most  
essential and holds the greatest potential.  These challenges:   
aggregation of components to elucidate the behavior of ensembles,  
integration across scales, and inverse problems, are basic to all  
sciences, and a variety of techniques exist to deal with them and to  
begin to solve the biological problems that generate them.  However,  
the uniqueness of biological systems, shaped by evolutionary forces,  
will pose new difficulties, mandate new perspectives, and lead to the  
development of new mathematics.  The excitement of this area of  
science is already evident, and is sure to grow in the years to come.   

        To achieve the great potential that is evident in this report, we  
make a number of specific recommendations.  We encourage

        ¥       enhanced support for individual interdisciplinary research  
                at the interface between biology and mathematics;

        ¥       support for interdisciplinary collaboration;



        ¥       support for graduate and postdoctoral fellowships;

        ¥       support for mid−career fellowships and visiting fellowships;

        ¥       support for educational developments at the precollege and  
                undergraduate level;

        ¥       funding for improved computer facilities, software  
                clearinghouses, and electronic networks;

        ¥       development of minicourses;

        ¥       programs to encourage and involve under−represented  
                groups.   

        Mathematical and computational biology is a vital, crucial,  
and rapidly growing subject that complements and guides empirical  
work, elucidates mechanisms, and provides model systems for study  
and manipulation.  Such model systems indeed, in some  
circumstances, can reduce the need for experimentation on living  
organisms or natural systems when such experimentation presents  
ethical, fiscal, or logistical difficulties.  Mathematical and  
computational research is comparatively inexpensive, and great  
dividends can be realized from a relatively small investment of  
funds.  Because the subject lies between traditional disciplinary  
areas, its support often "falls between the slats" at funding  
agencies.  We urge that specific mechanisms be developed to  
recognize the unique character of the subject and to provide the  
support that will foster the development of work that truly can  
make contributions both to biology and to mathematics.  
.



Chapter 1  

The Impact of Biology on Mathematics

The application of mathematics to biology has in turn had  
considerable effect on the development of new areas of  
mathematics.  This may seem surprising, because of the different  
natures of biology and mathematics. Mathematics strongly prizes  
rigor and precision.  Mathematical fact is immutable, and  
successful mathematical theories have lifetimes of hundreds or  
thousands of years.  By contrast, most of our knowledge of  
biological systems is recent, and most biological theories  
evolve rapidly.  Nonetheless, the interface between mathematics  
and biology has initiated and fostered new mathematical areas.   
This report highlights areas of mathematics that have been  
influenced greatly by biological thinking in the past, and  
presages future developments by identifying some areas of  
biology that will require the development of new mathematical  
tools.   
        Of course, many and perhaps most applications of  
mathematics in biology will have little effect on core areas of  
mathematics.  Interactions of mathematics and biology can be  
divided into three categories.  The first class involves routine  
application of existing mathematical techniques to biological  
problems.  Such applications influence mathematics only when the  
importance to biological applications provokes refinements and  
further mathematical developments, an inherently slow process.   
In other cases, however, existing mathematical methods are  
inadequate, and new mathematics must be developed, within  
conventional frameworks.  In the final class, some fundamental  
issues in biology appear to require altogether new ways of  
thinking quantitatively or analytically.  In these  
circumstances, creation of entirely new areas of mathematics may  
be necessary before it will be possible to grapple successfully  
with the underlying biological problems.  Development of new  
biological technologies and the rapid accumulation of  
information and data will prompt the application of classical  
mathematics as well as the creation of new mathematics.  As in  
the past, some of these new mathematical theories will be quite  
rich and develop lives of their own.  The feedback from these  
applications will help mathematics retain its vitality.   
        The application of mathematics to biology is not new;  
neither is evidence of impacts on mathematics.  Robert Brown, a  
botanist, discovered what is now called Brownian motion while  
watching pollen grains in water.  Today, the mathematical  
description of such motion is central to probability theory.   



Similarly, catastrophe theory is a branch of mathematics  
stimulated to large extent by biological theory.  Inspired by  
Waddington’s concept of an epigenetic landscape (Waddington  
1957), Rene Thom generated interest in singularity theory and  
the bifurcations of dynamical systems (Thom 1975).  Although the  
style of modeling used by the proponents of catastrophe theory  
was severely criticized, the beautiful mathematics it spawned  
has applications that extend far beyond those originally  
envisaged as part of catastrophe theory.  And perhaps most  
importantly, the origins of the field of statistics were  
intimately tied up with biology.   
        In other areas, the influence has been nearly as great.   
The theories of dynamical systems and partial differential  
equations represent areas of mathematics in which numerous  
fruitful lines of inquiry were prompted by biological questions,  
and in which such influences continue to be felt.  In  
theoretical fluid mechanics, the dominant classical stream of  
development was toward understanding of high Reynolds number  
(almost inviscid) flow and of compressible flows; biology has  
motivated a great many new developments in viscosity dominated  
flows (Purcell 1977).  More recently, molecular biology has  
stimulated advances in analysis and low−dimensional topology and  
geometry.   
        In this section, we discuss these examples in more detail,  
as well as genomic analysis, an area of biology that seems to  
demand the creation of new mathematical specialities.  The  
section ends with a description of "grand challenges" in  
biological mathematics, areas that seem to demand novel  
mathematical and computational approaches.   

1.1     Accomplishments of the Past

        1.1.1   Statistics and Stochastic Processes

        Statistics is perhaps the most widely used mathematical  
science.  It has achieved its present position as a consequence  
of an intellectual development begun during the 19th century.   
"From the doctrine of chances to the calculus of probabilities,  
from least squares to regression analysis, the advances in  
scientific logic that took place in statistics before 1900 were  
to be every bit as influential as those associated with the  
names of Newton and Darwin" (Stigler 1986, p. 361).   
        What were the major influences in this development?  Porter  
(1986) introduces his history of statistics in the 19th century  
as follows.  "This book.... is a study of the mathematical  
expression of what Ernst Mayr calls ’population thinking’  
(Porter 1986, p.Ê6; see also Mayr 1982, 1988, pp. 350−352), and  
"the development of statistical thinking was a truly  
interdisciplinary phenomenon for which mathematics had no  



priority of position; new ideas and approaches arose as a result  
of the application of techniques borrowed from one or more  
disciplines to the very different subject matter of another"  
(Porter 1986, p. 8).  Porter later states "that the modern field  
of mathematical statistics developed out of biometry is not  
wholly fortuitous.  The quantitative study of biological  
inheritance and evolution provided an outstanding context for  
statistical thinking, and quantitative genetics remains the best  
example of an area of science whose very theory is built out of  
the concepts of statistics.  The great stimulus for modern  
statistics came from Galton’s invention of the method of  
correlation, which, significantly, he first conceived not as an  
abstract technique of numerical analysis, but as a statistical  
law of heredity." (Porter 1986, p. 270).  The profound problems  
raised by Darwin’s insight have led to new fields of  
mathematical science.  Only the surface has been scratched by  
these developments, and major challenges remain.   
        Darwin and Galton were cousins, and Darwin’s ideas had a  
great influence on Galton (Porter 1986, p. 133 and p. 281).   
Likewise, problems in eugenics and plant breeding were the  
motivation for R. A. Fisher’s statistical work (Box 1978, Fisher  
1930).  The analysis of variance and the theory of experimental  
design were developed to interpret and plan plant breeding  
experiments at the Experimental Station at Rothamsted, an  
institution that continues to be a major influence on  
statistical theory and practice.  The benefits to mankind of  
these and later biometrical developments have been enormous.   
The "Green revolution" in agriculture would have been quite  
impossible without these tools.  Modern medicine and public  
health practice depend upon carefully designed and interpreted  
clinical trials, and sophisticated studies of massive  
observational data sets.   
        Problems of the theory of evolution and genetics have had a  
profound influence upon probability theory as well as  
statistics.  Galton and Watson founded the theory of branching  
processes in response to a problem of the extinction of human  
family names (Galton and Watson 1874).  Yule, a student of  
Galton’s, developed the random process called the Yule process   
in response to a paper by Willis on the evolution of genera  
(Yule 1924).  The same ideas appeared earlier in McKendrick  
(1914), and later in Furry (1937).  McKendrick (1926) and  
Kermack and McKendrick (1927) developed their nonlinear birth  
and death process in response to problems in the theory of  
epidemics.
        The influence of biology on probability theory and  
statistics has been equally strong in later years of this  
century.  Feller’s celebrated work on stochastic processes  
originated in the Volterra theory of competition, and continued  
in response to problems in population genetics (Feller 1939,  
1951; also see Kolmogorov 1959).  Neyman, Park and Scott (1956)  



developed stochastic models in order to interpret experiments of  
Park on flour beetles.  In these experiments, two competing  
species of beetles were pitted in competition.  To Park’s  
surprise, the outcome of a given experiment could not be  
predicted; but in a long series of experiments, the statistical  
distribution of outcomes was predictable.  The flour beetle  
connection is still very strong (see Costantino and Desharnais  
1991).  The early volumes of the Berkeley Symposia contain many  
more examples of biological inspiration of mathematical theory  
(Neyman 1945, and subsequent).   
        Many current and future challenges for statistics and  
probability that are motivated by questions in molecular  
biology, genetics, and molecular evolution will require new  
techniques and theories.  One such set of challenges involves  
the use of DNA sequence data to reconstruct phylogenetic trees,  
analyze genetically complex traits, and study other problems.   
As more and more DNA sequence data are accumulated, patterns  
arise and exploratory data analysis techniques need to be  
developed to look through the wealth of data for patterns.  The  
ordering and the frequency of the four nucleotides is not random  
(even in noncoding regions).  To compare two sequences of DNA or  
protein (or compare a given sequence with a databank) and to  
look for matches or similarities (sequence alignment) required  
the creation of new algorithms.  New methods are needed to find  
regions of similarity and to assess the significance of  
similarities detected.  Comparisons can answer both evolutionary  
and functional questions.  Are sequences descended from a common  
ancestral sequence?  Do they serve similar functions?  One  
problem has been to calculate the probability of a long matching  
region between two DNA sequences, where some level of dependence  
occurs as a result of overlapping regions.  Strong limit laws  
have been established that give rates for the longest matching  
sequences between different sequences (with a given proportion  
of mismatches) as the length of the sequences increases.   
Detailed distributional behavior has been obtained using the  
Chen−Stein method of approximation by a Poisson random variable.   
These new distributional results are now used as a basis for  
statistical tests.  Arratia et al. (1990) contains a snapshot of  
current mathematical work on these questions.
        Relevant statistical questions include the calculation of  
Markov−type probabilities and likelihoods over directed graphs;  
maximum likelihood estimation for multinomials with highly  
non−regular parameter spaces involving large numbers of nuisance  
parameters; model selection from among large numbers of  
hypotheses of the same dimension and selection among small  
numbers of non−nested hypotheses of different dimension.   
        These problems would be hopelessly intractable were it not  
for recent and likely advances in computational statistics.   
With computing power now available, we quickly can narrow our  
search for promising algorithms and test their effectiveness.   



Other challenges involving DNA sequence data include searches of  
two of more pieces of data for (longest) matching subsequences.   
For these, new distributional results are required.   
        Another area of mathematical research that will be  
stimulated by biology is the probabilistic theory of discrete  
and dynamic structures.  While scattered beginnings of this  
field have been made over the last three decades, the major  
developments are yet to come.  Illustrative developments in the  
field include random graphs and random directed graphs,  
interacting particle systems, stochastic cellular automata,  
products of random matrices, and nonlinear dynamical systems  
with random coefficients.  For example, Erdos and Renyi (1960)  
created the field of random graphs to model apparently random  
connections in neural tissue.  Erdos and Renyi discovered  
numerous examples of "phase transitions," and many more have  
been discovered since (see Bollob s 1985).   
        Advances in computing power have revolutionized measurement  
techniques, which generate an abundance of biological data and a  
need for concomitant advances in quantitative methods of  
analysis.  The interface between experimentation, mathematics,  
and computations is manifested at every stage of scientific  
investigation.  A biological investigation often results in a  
proposal for a class of mathematical models.  Such models may  
provide insight into the molecular processes (which need not be  
experimentally observable), and may also suggest new  
experiments.
        For instance, counting process models have been developed  
for studying patterns of arrivals and interactions of nerve  
impulses from different neurons (Brillinger 1988, Tuckwell  
1988).  Markov processes have been used extensively in analyzing  
membrane channel data, in studying the kinetic behavior of ionic  
channels, and in understanding cell survivability and DNA damage  
caused by ionizing radiation (Neyman and Puri 1981; Yang and  
Swenberg 1991).  A novel aspect of some of these studies is that  
both transition mechanisms and state spaces must be inferred  
from data.  In fact, the analysis of single channel data by  
Markovian models has led to new interpretations of some neural  
parameters different from that offered by the Hodgkin−Huxley  
model (see Aldrich et al. 1983).  Stochastic differential  
equation models have been used for investigating the  
depolarization of the membrane potential of spatially  
distributed neurons (Kallianpur and Wolpert 1987).  The  
stochastic nature of the measurements has resulted in new  
developments in stochastic integration and differentiation.   
Neurobiology has stimulated the growth of this field.
        For the corresponding problems of statistical inference,  
new methods and corresponding algorithms are needed for model  
validation and the estimation of parameters.  It can happen that  
models appear to fit according to currently used criteria even  
though they have not caught the essence of the biological  



phenomena of interest.  A relevant question to ask is, how far  
off can the model be and still ’fit’?  In other words, subject  
to fitting the data, the model should be biologically  
interpretable.  In this area of research, collaborations between  
neurobiologists and statisticians have been particularly  
successful, as evidenced by, for example, joint work on spike  
train pattern recognition (Brillinger and Segundo 1979),  
estimation of single channel kinetic parameters (Milne et al.  
1989), temporal clustering of channels (Ball and Samson 1987),  
estimation of open dwell time in multi−channel experiments (Yang  
and Swenberg, in press), and identification of kinetic states  
(Fredkin and Rice 1986).
        Construction of confidence intervals for parameters,  
identifiability of models, estimation of kinetic parameters from  
the partially recorded current data, design of experiments to  
collect multivariate data as opposed to univariate data, and  
integration of the experimental results collected at micro and  
macro levels by stochastic modeling are among the important  
research problems.  Collaborations between biologists and  
statisticians are essential in developing statistical modeling  
methods for research in biology.
        A recurrent problem has been the lag between advanced  
theory and current practice.  Most biologists now have at least  
an introductory course in statistics, but their understanding is  
generally insufficient to perform well designed experiments or  
effective analysis of their data.  Expert systems can help  
biologists make better use of their experimental resources and  
the data that result.  The production of such expert systems  
offers both a theoretical challenge and the prospect of a  
widespread and lasting effect on the statistical practice of  
biologists.   

        1.1.2   Dynamical Systems Theory

        The theory of dynamical systems has been stimulated by  
biological questions.  For example, iterations of a single  
nonlinear function, described via a population model of a simple  
kind, capture the dynamics of an isolated population with  
discrete generations, subject to influences that regulate the  
population numbers exclusively through the population size.   
More explicitly, the population size at generation (n+1) is  
assumed to be a given nonlinear function of the population size  
at generation (n).  Models of this type were introduced in  
population studies a long time ago.  Isolated studies of the  
iteration of functions were conducted near the beginning of the  
twentieth century.  Some of this work, notably that by Julia  
(1918) and Fatou (1919) and then by Sarkovskii (1964) and  
Myrberg (1963), pointed to a rich mathematical structure.   
However, it was only in the 1970’s that a widespread  



appreciation for the depth and beauty of the mathematical  
phenomena involved in these mathematical problems emerged.   
Population biologists, especially May, played a role in  
stimulating this appreciation.  One can only speculate as to  
whether the theory of these iterations would have "taken off" as  
it did without this influence from population biology, but  
clearly, the motivation from population biology was an important  
part of the chain of historical events that led to very  
significant scientific and mathematical discoveries.   
        The study of simple population models provides a classic  
example of mutual stimulation of mathematics and biology, with  
resulting benefits to both.  The interlocking efforts of  
mathematicians, biologists, and physicists formed a network of  
positive feedbacks that moved the subject to new levels of  
sophistication.  Their investigations showed clearly the  
existence of universal sequences of bifurcations in iterations  
of one−dimensional maps.  Libchaber provided striking  
confirmation of Feigenbaum’s discoveries about period doubling  
bifurcations in fluid convection experiments.   
        Substantive mathematics has grown from these beginnings.   
Among other developments, Lanford extended Feigenbaum’s  
arguments with numerical analysis to give a beautiful example of  
a rigorous "computer" proof.  The study of interval maps was  
generalized to encompass maps of the circle.  This work on  
circle maps has been used by Glass, Winfree and others for  
describing the phase responses of biological oscillators,  
particularly in cardiology.  The work on maps of the interval  
has also been the starting point for the work of Carleson and  
Benedicks on the Henon map, a two−dimensional map that is a  
prototype for chaotic behavior.    
        The mathematics described above can be evaluated both for  
its impact within mathematics and for its "real world"  
significance.  On both counts, the subject appears to have  
lasting value.  On the one hand, a rich structure is displayed  
by a substantial set of mathematical objects.  Overstating the  
case slightly, one can say that all families of one−dimensional  
maps display the same dynamical behavior.  Understanding  
analytically and geometrically why this is true continues to be  
a challenging and interesting area of research with fascinating  
connections to the world of "complex dynamics" and  
quasi−conformal mappings.  On the other hand, the theory has  
laid bare what appear to be the fundamental mechanisms for the  
creation of chaotic behavior in physical systems and for  
universal patterns of bifurcations that are displayed by systems  
otherwise unrelated to one another.  Within mathematics, this  
sequence of events has been a success story, one in which  
interest in biological models provided a significant stimulus to  
mathematics.  Feedback from the resulting mathematics to the  
biological sciences continues.  Good mathematics often finds  
application in unsuspected ways.   



        Beyond the work involving iterations of one−dimensional  
mappings, many other points of contact have occurred between the  
biological sciences and dynamical systems theory.  Life itself  
is a dynamical process, and dynamical systems models are  
ubiquitous in biology.  For example, the model of Hodgkin and  
Huxley for nerve impulses, described later in this document, is  
a dynamical system.   
        One seldom can measure all the parameter values entering  
dynamical models of biological phenomena, and the models  
themselves usually represent the behavior of aggregate  
quantities.  Therefore, one would like to classify the possible  
dynamical behaviors arising from models.  This challenging  
problem remains an important area of contact between mathematics  
and biology.  Today, great interest is shown in the dynamics of  
networks of biological neurons and the dynamics of systems of  
coupled oscillators.  In both situations one seeks to explain  
details of the dynamical behavior and understand how collective  
behavior emerges from the coupling of individual elements.  As  
the number of elements increases, singular perturbation methods  
and continuum models blend with dynamical systems theory.   
        Computation has played an important role in dynamical  
systems theory, especially in its application to specific  
problems.  Applications in biology require the development of  
effective computational methods for the analysis of dynamical  
systems and their bifurcations.  New mathematics is emerging  
from work in this direction.   

        1.1.3   Nonlinear Partial Differential and Functional  
                Equations

        Nonlinear partial differential and functional equations  
traditionally have been applied in the physical sciences.   
Several examples highlight the seminal impact of biological  
ideas on mathematical research in this area.  Below, we focus on  
problems from demography, developmental biology, physiology, and  
population biology.   
        Demographic methods have been applied to the study of human  
and nonhuman populations for centuries.  These methods, which  
form the basis both for population projections and for  
understanding population consequences of life history phenomena,  
have had a strong impact in mathematical theory.  A snapshot of  
the impact of demography is provided by the history of ergodic  
theorems.  The renewal equation, a convolution integral equation  
that provided the first dynamical model for an age−dependent  
population, has roots in the work of Euler, Bortkiewicz, and  
Lotka (see Samuelson 1976).  Sharpe and Lotka (1911) argued that  
most solutions to their renewal equation could be represented in  
a Fourier type expansion.  Their argument was not accepted  
mathematically until Feller (1941) gave a rigorous proof for  



asymptotic behavior under appropriate conditions.  As yet, the  
problem of stating conditions under which the renewal equation  
admits a Fourier type expansion remains partly open (see Inaba  
1988).   
        The later demographic models of McKendrick (1926) and  
Gurtin and MacCamy (1974), and the epidemiological models of  
Kermack and McKendrick (1927) and Hoppensteadt (1974) have  
generated similar mathematical challenges in the realm of  
functional differential equations (see Jagers 1975, Cohen 1979,  
Metz and Diekmann 1986, Castillo−Chavez 1989).  The rich  
interaction between demography, epidemiology, ecology, and  
evolutionary biology continues to be a source of new  
mathematical problems related to the existence, uniqueness, and  
characterization of the solution of nonlinear functional  
equations.  These problems will continue to be a fertile area of  
mathematical research since current mathematical and numerical  
approaches are only partially adequate for addressing these  
issues.   
        The theory of diffusion, which describes the behavior of a  
population of randomly moving particles or molecules,  
exemplifies an area traditionally viewed within the context of  
chemistry or physics.  However, the mathematics of nonlinear  
diffusion equations has received much of its impetus from  
biology.  R.A. Fisher’s (1937) interest in the problem of the  
spread of advantageous genes in a population stimulated his  
consideration of an equation that incorporates diffusion  
augmented by a simple ("logistic") nonlinear growth term.  It  
was treated simultaneously by Kolmogorov et al. (1937), who  
proved the existence of a stable travelling wave of fixed  
velocity representing a wave of advance of the advantageous  
gene.  This simple nonlinear reaction−diffusion equation was  
also studied by Skellam and others as a model for spatial  
dispersal of a population.  Reaction diffusion equations were  
investigated by Turing (1952) to understand pattern formation  
and morphogenesis, fundamental problems of developmental  
biology.  The idea that uneven distributions of chemical  
substances could guide cellular differentiation had preceded  
Turing by nearly half a century, but how such "chemical  
prepatterns"  could arise naturally was unclear.  Turing  
demonstrated that simple molecular diffusion, coupled with  
appropriate bi−molecular interactions, could spontaneously give  
rise to such prepatterns, because a spatially uniform solution  
of certain coupled parabolic equations bifurcates into a  
nonuniform state as certain parameters are varied.   
        Following the interest in Turing and Fisher equations, the  
study of nonlinear reaction diffusion equations has undergone a  
rich mathematical development.  The study of standing and  
travelling wave solutions, and of characterizing the  
bifurcations and dynamical behavior of such equations, has  
spawned new and advanced mathematical techniques.  Recent  



attention has been focused on two− and three−dimensional  
geometry, including target patterns, spiral, and scroll wave  
geometry and the like.  Connections with the chemical reaction  
of Belousov and Zhabotinskii (see for example, Murray 1989) with  
pathologies of cardiac physiology, and with uneven ("patchy")  
distribution of organisms in space provide new impetus and  
motivation for further interest in this field.   
        Although the equations and mathematical knowledge arising  
from demography and epidemiology have already found applications  
(e.g., in evolutionary ecology, conservation biology and  
epidemiology), a strong need exists for new mathematics to  
address new pressing biologically motivated questions.  For  
example, at the interface of social dynamics and epidemiology,  
new models describe "social mixing" (e.g., formation and  
dissolution of pairs) and its role in disease dynamics.  The  
models are novel systems of hyperbolic partial differential  
equations.  These models may affect practical issues of public  
health and broader biological issues.  Since current techniques  
are as yet in their infancy, it is likely that new mathematics  
will develop from these efforts.   
        While reaction−diffusion equations are mathematically  
simpler than the Navier−Stokes equations, they have presented  
opportunities for fertile biological and mathematical research.   
General techniques for studying the finite dimensional behavior  
of evolution equations have found some of their first  
applications in reaction diffusion equations.  But current  
theories of developmental biology provide new models that are at  
present barely tractable under limited circumstances.  Examples  
include the mechanochemical models of Murray, Oster, and Odell  
(see Murray and Oster 1984), which incorporate traction forces  
exerted by cells on each other, and partial integro−differential  
equations that depict direct responses of cells to one another,  
as for example in neural networks.  Further understanding of  
these models needs new mathematics.  

1.1.4   Classical Analysis

        Numerous examples exist of the mutual interactions of  
biology and classical analysis.  One of the most important is in  
the area of digital radiography.  Improved technologies for  
imaging biological objects have revolutionized medicine.  These  
technologies include computerized axial tomography (CT),  
magnetic resonance imaging (MRI Ñ also termed nuclear magnetic  
resonance imaging, or NMR), and emission tomography (PET and  
SPECT).  Each technique has mathematical aspects to its  
implementation and is expected to lead to many additional  
problems.  Regardless of technique, the wealth of digitized  
radiologic data has led to problems concerning their storage and  
transmission; solutions to these problems of data compression  



also require mathematical thinking.   
        More than 70 years ago Radon (1917) noted that a finite  
Borel measure on a Euclidean space can be reconstructed in  
principle from its projections on one−dimensional subspaces.   
This was rediscovered independently in other contexts by Cram r  
and Wold (1936), and others.  This piece of theoretical  
mathematics is at the heart of CT image reconstruction, for  
which Cormack and Hounsfield received the Nobel Prize in  
Physiology and Medicine in 1979.  The Nobel lecture of Cormack  
(1980) makes clear the centrality of inversion algorithms to CT.   
In Hounsfield’s lecture (Hounsfield 1980), he contrasts CT and  
NMR, which also depends on inversion algorithms for its  
successful application.  Important early algorithms for image  
reconstruction were contributed by Bell Laboratories  
mathematicians Shepp and Logan (1974).  Their work led to  
mathematics of interest in its own right (Logan and Shepp 1975).
        Vardi, Shepp, and Kaufman (1985) are responsible for a  
fundamental advance in positron emission tomography (PET). With  
emission tomography in general, a substance such as a sugar that  
is differentially metabolized by different tissues is tagged  
with an emitting molecule.  In one case (PET) a positron is  
emitted, and in another (SPECT), a photon; with PET, each  
positron gives rise to two photons that move in opposite  
directions.  In either case individual photons are counted as  
they hit a detector surrounding the object (for example, a human  
head) being imaged.  The object can be modeled as a spatially  
inhomogeneous Poisson process, and the mathematical task is to  
reconstruct the intensity function from the counts.  The  
approach of Vardi et al. was to employ an algorithm, the EM  
algorithm, that was developed by Harvard statisticians Dempster,  
Laird, and Rubin (1977); earlier basic work on EM−like  
algorithms was done by the mathematician Baum (1970) and others  
(see discussion of the paper by Vardi et al. (1985) for  
extensive references).  A Bayesian approach to reconstruction in  
emission tomography utilizes Markov random fields that arise in  
statistical mechanics.  Important contributions have been made  
by Geman and McClure (1985, 1987).  Recently, Johnstone and  
Silverman (1990) have given minimax (in a statistical sense)  
rates of convergence for PET algorithms. The interface of  
emission tomography, mathematics, and statistics continues to be  
a particularly active area of research.  It should be noted that  
PET permits quantitative measurements, in vivo, of local  
hemodynamics, metabolism, biochemistry, and pharmacokinetics  
(Fox et al. 1985), and that SPECT is best used for problems of  
perfusion rather than metabolism.
        Data compression, i.e., storing salient aspects of  
pixel−by−pixel lists of binary integers, is viewed as a problem  
in coding. It is important to compress, in part to enable more  
complete medical records to be kept than is possible at present,  
and in part to enable transmitted digital images to be utilized  



in real time by experts in different venues when baud rates  
(i.e., information transmission rates) are limited.  Here, codes  
are of two basic types.  One is lossless, in which perfect  
reconstruction of the original image is possible, but which  
seldom leads to more than 75 percent reduction in pixel data;  
this is associated with Huffman, Ziv−Lempel, and other codes.   
The other basic type is lossy, in which perfect reconstruction  
is not possible, but for which it is possible to retain  
virtually all information contained in many images with  
approximately 90 percent reduction in pixel data.   
Tree−structured codes of the latter type have been implemented  
(Chou et al. 1989).

1.1.5   Topology and Geometry

        Additional areas of mathematics recently have developed  
interactions with biology.  Three−dimensional topology and  
low−dimensional differential geometry are two examples.   
Theorems about the global topological invariants of curves and  
ribbons in three−space have been instrumental in studying the  
structural conformation of closed circular DNA.  These  
mathematical ideas apply to supercoiling in closed DNA,  
topoisomerases, nucleosome winding, the free energy associated  
with supercoiling, and binding between proteins and DNA.  These  
applications were carried out by experimentalists, often in  
collaboration with mathematicians.  As collaborative work  
continues and our knowledge of the role of conformational  
changes of biological macromolecules grows, the biological  
problems to be solved become more complicated and the  
mathematical questions deepen.  For example, molecular biology  
has renewed interest in embedding invariants for graphs (used in  
studying topoisomers), the study of random knots (used to study  
solutions of macromolecules) and the tangle calculus (used in  
the study of the DNA enzyme mechanism).   

1.2     Grand Challenges

Two of the most influential books in the development of  
biological thought should be Plato’s Republic and Darwin’s  
Origin of Species.  Plato claimed that all the variation in  
observable horses, for example, is a mere shadow of an idealized  
abstract form of pure "horseness," not available to the senses.   
Plato’s notion of idealized forms was the basis of scientific  
developments for two millennia.  For example, Newton’s concepts  
of absolute space and time are idealizations on the model of  
Plato’s horseness.  In biology, the Linnaean concept of species  
is an operational version of Plato’s idea:  a Linnaean species  
is determined by a "type specimen," deposited in a museum  



somewhere, and all deviations between the type specimen and real  
members of the species are mere irrelevant accidents.  For  
Gauss, the variation in repeated astronomical measurements led  
to a theory of "error" in which variation was something to be  
eliminated.  The influence of the Platonic theory of ideal types  
extended far beyond science to, for example, popular notions of  
national or racial "types."   
        Darwin’s theory of the origin of species gave a central  
place to biological variation as a necessary ingredient in  
explaining speciation.  Because different individuals of a  
species vary in ways that are significant for their survival and  
reproduction, a given environment will select against some  
genotypes of a population; those that survive will produce  
offspring.  The survival of some gene combinations and the loss  
of others causes a population of organisms to evolve;  
differences among populations may then lead to reproductive  
isolation and speciation.  For Darwin, and for all biologists  
since then, the origin and consequences of variation among  
individuals are central to biological observation and theory.
        Little more than a century has passed since Darwin’s  
startling conceptual insight.  Developments in probability  
theory and statistics within the last century have made a start  
toward developing the concepts required to understand fully  
variation in nature.  But the mathematical concepts that will  
provide an integrated understanding of nonlinear dynamics in  
systems with variation between individuals have yet to be  
invented and analyzed.  What Newton’s calculus did for the ideas  
of Plato has yet to be done for the concepts of Darwin.  Other  
biological problems in which the connection between variation  
and nonlinear dynamics is an essential aspect of understanding  
the underlying phenomenon are numerous.    
        A second and related grand challenge recurs throughout this  
report:  the interaction of phenomena that happen on a wide  
range of scales in space, time, and organizational complexity.   
In studying biological systems one must confront an enormous  
range of scales.  One deals with phenomena that range from  
molecular processes that happen in small fractions of a second,  
to evolutionary, ecological and  population processes that occur  
on geological time scales.  Similar ranges exist in space from  
the molecular to the biospheric, and in organizational  
complexity.  We cannot develop the analytical or computational  
capability to treat this vast range of scales without  
encapsulating the behavior of smaller scales in models.  One  
consequence of making such approximations is that we lose the  
detail that imparts confidence in models; yet we must develop  
ways to suppress detail and proceed to the more aggregated  
models that are statistically manageable.   
        Organisms are complex assemblies of macromolecules reacting  
with each other in complicated networks.  Many small parts of  
the network have an important influence upon the proper  



functioning of the system.  Mutations, which change a single  
nucleotide along a strand of DNA, can affect the gross anatomy  
of an organism.  The details of these subunits, their  
differences and their interactions, are important at certain  
levels, and we cannot yet be confident about which details  
become unimportant as we move to higher levels of organization.   
The problem may be more difficult than comparable problems in  
statistical physics, because the differences among subunits are  
greater.  The distinction between these situations is analogous  
to the difference between assembling a large jigsaw puzzle and  
an orderly array of identical marbles.  The complexity of  
biological systems is of a different order of magnitude than the  
problems that have been confronted successfully in mathematics,  
and mathematical theories are needed to develop insights into  
our newly accumulated store of biological knowledge.
        Computation is essential for investigating mathematical  
problems arising in biology.  The storage and retrieval of the  
accumulated information is an enormous task.  The problems of  
pattern searching and matching of DNA sequences have been  
described above.  The computer provides the critical capability to  
explore and study such complex situations.  A useful comparison  
can be drawn between problems of engineering design and the  
structures found in biology, the products of tinkering rather than  
design (Jacob 1977).  There is a large difference between  
understanding the fundamental scientific principles of mechanics  
and designing large buildings or automobiles.  The most important  
aspect of a machine is its function, and design involves far more  
than drawing the blueprints for its manufacture.  Biology  
confronts us continually with the inverse problem to that of  
engineering design.  We know the basic principles of biochemistry  
and can laboriously determine biological structures.  From these  
blueprints we want to infer information about biological function.   
The experimental tools that are available for observing functional  
aspects of structure are limited by the fragility of life itself.   
We are left with incredible puzzles to solve with literally  
billions of pieces and only limited clues about how they fit  
together.  Even the problem of reconstructing the  
three−dimensional structure of a protein from its amino acid  
sequence is a major unsolved problem.  Our brains are incapable of  
coping with the wealth of biological data without the assistance  
of computers.  The complexity of biological problems requires that  
we also apply mathematical and computational approaches, and the  
benefits of such applications will be shared equally by the  
disciplines of biology and mathematics.   
.



Chapter 2

The Impact Of Mathematics On Cellular and Molecular Biology

The application of mathematics to cellular and molecular biology  
is so pervasive that it often goes unnoticed.  The determination  
of the dynamic properties of cells and enzymes, expressed in the  
form of enzyme kinetic measurements or receptor−ligand binding  
are based on mathematical concepts that form the core of  
quantitative biochemistry.  Molecular biology itself can trace  
its origins to the infusion of physical scientists into biology  
with the inevitable infusion of mathematical tools.  The utility  
of the core tools of molecular biology was validated through  
mathematical analysis.  Examples include the quantitative  
estimates of viral titers, measurement of recombination and  
mutation rates, the statistical validation of radioactive decay  
measurements, and the quantitative measurement of genome size  
and informational content based on DNA (i.e., base sequence)  
complexity.
        Several of the "classic experiments" in microbial genetics  
involved mathematical insights into experimental results.  For  
example, the Luria and Delbruck fluctuation analysis, which  
clearly established that mutation was independent of selection,  
was a mathematical argument upon which a simple but elegant  
experimental design was based.
        These examples are cited not to document the  
accomplishments of mathematical biologists but to bring focus to  
the fact that mathematical tools are intrinsic to biological  
fields.  The discussion that follows focuses more clearly on the  
more sophisticated development of new mathematical concepts and  
statistical models to explain the complexity of biological  
systems.  Biological complexity derives from the fact that  
biological systems are multifactored and dynamic.
        Quantitative research in these fields is based upon a wide  
variety of laboratory techniques, with gel electrophoresis and  
enzyme−based assays among the most common.  Measurements include  
activity, molecular weight, diameters, and sizes in bases, and  
with all these an understanding of the accuracy, precision,  
sources of variation, calibration, etc.  In short, the quality  
of the measurement process is of central significance.   
        With the greatly increased amount of data being generated  
by laboratory techniques, and the pressure to move to more  
automated analysis, it is becoming even more important to  
understand the statistical aspects of these laboratory  
procedures.  Such statistical work will involve the analysis of  
routinely collected data, the design and analysis of special  



studies, the development of new calibration and analysis  
techniques, and theoretical studies of the procedures in use,  
with an emphasis on robustness and the capacity to automate  
procedures.  Furthermore, it will require a familiarity with the  
biology and the mathematical foundations of the analyses.
        While the experimentalist strives to isolate single  
variables in order to make statistically significant  
measurements, many systems are not amenable to such single  
factor examination.  Therefore, mathematically based  
computational models are essential to meaningful analyses.  The  
goal of the present discussion is to provide a framework in  
which ongoing research in mathematical cell and molecular  
biology may be logically placed, and future opportunities can be  
described.  This framework will provide for the analysis of the  
resource needs for future development and carries implications  
for current shortfalls.  One factor is that undergraduate and  
graduate training in biology treats mathematics too  
superficially, especially in light of its role as an  
underpinning for quantitative research.

2.1     Accomplishments of the Past

2.1.1   DNA Structure

        Differential geometry is the branch of mathematics that  
applies the methods of differential calculus to study the  
differential invariants of manifolds.  Topology is the  
mathematical study of shape.  It defines and quantizes  
properties of space that remain invariant under deformation.   
These two fields have been used extensively to characterize many  
of the basic physical and chemical properties of DNA.  Specific  
examples of particular note follow.
        The recent review of Dickerson (1989) summarizes how  
geometric concepts of tilt, roll, shear, propeller twist, etc.  
have been used to describe the secondary structure of DNA (i.e.,  
the actual helical stacking of the bases that forms a linear  
segment of DNA).  In addition, these concepts can be used to  
describe the interaction of DNA with ligands such as  
intercalating drugs (Wang et al. 1983).
        From the time that closed circular DNA was discovered (see  
3. below), it has been clear that such DNA exhibits both  
physical and chemical properties that differ in fundamental ways  
from those of related linear (or open circular) DNA.  Using  
differential geometry and topology, both molecular biologists  
and mathematicians have been able to explain many of the  
properties of these molecules from two basic characteristics of  
the linking number: first, that it is invariant under  
deformations; and second, that it is the sum of the two  



geometric quantities, twist and writhe (White 1969).  Among the  
major applications are:

        a.      the explanation for and extent of supercoiling in a  
                variety of closed DNAs (Bauer 1978);
        b.      the analysis of the enzymes that change the topology  
                of a DNA chain (Cozzarelli 1980, Wasserman and Cozzarelli 1986);
        c.      the estimation of the extent of winding in nucleosomes  
                (Travers and Klug 1987);
        d.      the determination of the free energy associated with  
                supercoiling (Depew and Wang 1975);
        e.      the quantitative analysis of the binding of proteins  
                and of small ligands to DNA (Wang et al. 1983);
        f.      the determination of the helical repeat of DNA in  
                solution and DNA wrapped on protein surfaces (White et al.  
                1988); and,
        g.      the determination of the average structure of  
                supercoiled DNA in solution (Boles et al. 1990).   

        Topology, and in particular knot and link theory of closed  
space curves, has been used extensively to elucidate additional  
intertwining of closed DNA caused by catenation of two closed  
duplexes or knotting of a single duplex.  In particular, the  
recent developments in polynomial invariants for links and knots  
have been used to describe the structure of DNA and to  
characterize the action of recombinases (Wasserman and  
Cozzarelli 1986, White et al. 1987).

2.1.2   Macromolecular Sequences

        DNA sequences are collected in the GenBank database, and  
protein sequences are collected in the Protein Identification  
Resource (PIR).  When a new DNA sequence is determined, GenBank  
is searched for approximate similarities with the new sequence.   
Translations of the DNA sequence into the corresponding amino  
acid sequence are used to search the protein database.   
Sensitive search methods require time and space proportional to  
the product of the sequences being compared.  Searching GenBank  
(now more than 40ÊxÊ106 bases) with a 5000 bp sequence requires  
time proportional to 2 x 1011 with traditional search  
techniques.  Lipman and Pearson (1985) have developed techniques  
that greatly reduce the time needed.  Using their techniques,  
one can screen the  databases  routinely with new sequences on  
IBM PCs, for example.  These methods rapidly locate diagonals  
where possible similarities might lie and then perform more  
sensitive alignments.  This family of programs, FASTA, FASTN,  
etc., are the most widely used sequence analysis programs and  
have accounted for many important discoveries.  An example of  
the impact of such analysis is the unexpected homology between  



an oncogene and a growth factor. This discovery became the basis  
of the molecular theory of carcinogenesis.
        More sensitive sequence analysis can be obtained by dynamic  
programming methods.  In part they are used after the diagonals  
are located in the FASTN and FASTA programs.  Here similar  
sequence elements are aligned with positive scores and  
dissimilar elements are aligned with negative scores.   
Complicating the analysis are the insertions and deletions that  
also receive negative scores.  The challenge of the problem is  
to arrange two sequences into the maximum scoring alignments.   
Additional difficulty arises from the fact that slightly similar  
regions of DNA or protein sequences might lie in otherwise  
unrelated sequences.  In spite of the complex nature of the  
problem, an efficient algorithm (Smith and Waterman 1981) has  
been devised and is in wide usage.
        The problem of sequence comparison creates a related  
statistical problem of estimating p−values (attained  
significance levels) for the alignment scores.  The set of  
possible alignment scores from two sequences are dependent  
random variables since they result from overlapping sequence  
segments.  Motivated by the problems of sequence comparison,  
investigators have refined and extended the Chen−Stein method  
(Arratia et al. 1989).  This method is a powerful tool for  
approximating the distribution of sums of dependent indicator  
random variables by the Poisson distribution.  In addition to  
sequence analysis, this method is being used in regression  
analysis and random graphs.

2.1.3   Genetic Mapping

        Genetic mapping deals with the inheritance of certain  
"genetic markers" within the pedigree of families.  These  
markers might be genes, sequences associated with genetic  
disease, or arbitrary probes determined to be of significance  
(e.g., Restriction Fragment Length Polymorphism [RFLP] probes).   
The sequence of such markers and probabilistic distance  
(measured in centiMorgans) along the genome can often be  
determined by hybridizing each family member’s genome against  
the predetermined probes.  In essence, the genetic map most  
likely to produce the observed data is constructed.  Only a few  
years ago our knowledge of the mathematics involved and the  
computational complexity of algorithms based on that mathematics  
allowed us to analyze no more than five or six markers.  As our  
knowledge of approximations to the formulas and likelihood  
estimation has improved, we have been able to produce software  
capable of producing maps for 60 markers or more (Lander and  
Botstein 1986).  Progress in this area has been based on  
mathematical areas such as combinatorics, graph theory and  
statistics.



2.1.4   Cell Motility

        Cells can move, monitor changes in their environment, and  
respond by migrating towards more favorable regions.  It is a  
remarkable fact that a bacterial flagellum is driven at its base  
by a reversible rotary motor powered by a transmembrane proton  
flux, and analysis of models for this device has been prolific.   
The study of bacterial chemotaxis (the migration of bacteria in  
chemical gradients) has been particularly rewarding, in part  
because organisms such as Escherichia coli are readily amenable  
to genetic and biochemical manipulation, and in part because  
their behavior is closely tied to the constraints imposed by  
motion at low Reynolds number and by diffusion (of both the cell  
and the chemoattractant).  Mathematics has helped us learn how a  
cell moves (Brokaw 1990, Dembo 1989), how it counts molecules in  
its environment (Berg and Purcell 1977), and how it uses this  
information (Berg 1988).  It also has made it possible to relate  
the macroscopic behavior of cell populations to the microscopic  
behavior of individual cells (Rivero et al. 1989).   
        Studies of eukaryotic cell motility (and of the motion of  
intracellular organelles) has been revolutionized by in vitro  
assays in which motor molecules (myosin, dynein, kinesin) and  
the polymers along which they move (actin and microtubules) are  
linked to glass or plastic surfaces.  Following the addition of  
ATP, one can observe, for example, the motion of individual  
actin filaments over a glass slide bearing only the heads of the  
myosin molecules.  Statistical analysis is playing an important  
role in determining how such assays can be extended to the study  
of single motor molecules (Howard et al. 1989).

2.1.5   Structural Biology

        Mathematics has made perhaps its most important  
contribution to cellular and molecular biology in the area of  
structural biology.  This area is at the interface of three  
disciplines Ñ biology, mathematics and physics Ñ because its  
success has involved the use of sophisticated physical methods  
to determine the structures of biologically important  
macromolecules, their assembly into specialized particles and  
organelles, and even at higher levels of organization more  
recently.  A wide array of methods has been employed, but we  
focus on the two most powerful of these, x−ray crystallography  
and Nuclear Magnetic Resonance spectroscopy (NMR), but with a  
mention of other methods.
        Mathematics plays three roles.  First, computational  
methods lie at the heart of these techniques because a large  
amount of information about local areas or short distances are  



encrypted in the raw data, and it is a major computational task  
to deduce a structure.  Second, new mathematical methods of  
analysis are continually being developed to improve ways of  
determining the structure.  Third, increasingly sophisticated  
computer graphics have been developed in response to the need to  
display and interpret such structure.
        In crystallography the actual process of data collection  
has been enhanced by modern methods of detection (e.g., area  
detectors) and the use of intense synchrotron sources so that  
data collection per se is rarely rate limiting.  Also, the use  
of modern techniques of recombinant DNA have greatly facilitated  
the isolation of material for crystallization.  The  
rate−limiting step is often the preparation of isomorphous  
derivatives.  As computational methods improve, fewer and  
sometimes no derivatives need to be analyzed.   
        Until the development of 2D−NMR in 1978 by Richard Ernst,  
the use of nuclear magnetic resonance for studying the structure  
of biological macromolecules was limited by the need to  
represent too much information in a limited space.  With the  
pioneering development of the ability to represent NMR spectra  
in two frequency domains, it became possible to resolve the  
spectra of small proteins and oligonucleotides.  A key benefit  
was that cross peaks, resulting from magnetic interactions of  
nuclei close to one another, could be measured.  Since these  
cross peaks contained spatial information, there was an  
immediate movement to determine the structure of these molecules  
at atomic resolution.  The technique has been remarkably  
effective.  The structures of a number of proteins and  
oligonucleotides have been determined.  The use of NMR to  
determine structures has proven to be an important complement to  
x−ray crystallography because the structures of many  
biologically important molecules (e.g., zinc fingers by Klevit  
1991, Summers 1991, and Lee et al. 1991) have resisted attempts  
at crystallization; these structures must be studied in  
solution.  The success of this technique has been critically  
dependent on mathematics beginning with the theoretical  
underpinnings by Ernst.  The determination of structures is  
dependent on the mathematical technique of distance geometry  
that calculates all structures consistent with the distance  
constraints obtained from the NMR experiment.  Other methods  
have included molecular dynamics and more recently the use by  
Altman and Jardetzky (1989) and Altman et al. (1991) of a Kalman  
filter to sample conformational space.  There are significant  
limitations to 2D−NMR for structure determinations.  First of  
all, the resolution obtained from NMR is less than that obtained  
from the best x−ray structures and is insufficient to see in  
detail active sites of biologically important molecules.  A  
major mathematical challenge is to obtain such detailed  
structural information from structures that are basically  
underdetermined.  One important approach is to use the structure  



to back−calculate the NMR data and by iteration improve  
resolution.  A second limitation is that the determination of  
structures is limited to molecules with a weight of less than  
about 15,000.  Better computational techniques could extend the  
limit.
        One cannot over−estimate the importance of solving  
structures at atomic resolution.  It has led directly to an  
understanding of the replication of DNA and its supercoiling in  
chromatin; the basis of protein and nucleic acid secondary,  
tertiary, and quaternary structures, how proteins act as enzymes  
and antibodies; and how electron transfer is achieved.

2.2     Grand Challenges

The grand challenges at the interface between mathematics and  
computation and cellular and molecular biology relate to two  
main themes:  genomics, which is critical for example to support  
efforts at sequencing and mapping the human and other genomes,  
and structural biology, including structural analysis, molecular  
dynamic simulation, and drug design.  These two areas have  
developed rapidly in the recent past because of the  
contributions of mathematics and computation, and they will  
continue to derive particular benefit from an enhanced  
interaction.   

2.2.1   Structural Analysis of Macromolecules

        The area of molecular geometry and its interface with  
visualization has been under−represented in research to date.   
This research, which would benefit from the involvement of  
geometers and would likely contribute to new mathematics, is a  
major limiting area in structural biology, especially in drug  
design and protein folding.  As noted above, new methods will  
enhance the use of NMR for the determination of structures.   
Significant advances for solving mathematically the phase  
problem are being pursued.  Important advances are being made in  
the field of computer−aided drug design.
        Related to the structure of crystalline and hydrated  
proteins is the question of how proteins fold.  For many  
proteins the folded structure and organelle formation (e.g.,  
ribosomes) are dictated by the sequence.  Reduction of the  
folding code has resisted intense efforts, but very recently  
important new approaches have been developed that have revealed  
significant new information.  For example, two laboratories have  
shown that relatively short polypeptides can have significant  
secondary structure.  This finding is important because it  
validates a piecemeal approach to protein folding, where  
secondary structure can be considered apart from tertiary  



structure.  The second is the minimalist approach of DeGrado et  
al. (1989), in which model structures with predicted motifs are  
synthesized by chemical means.  Experimental advances such as  
these, together with the explosive expansion of the available  
data and the development of more powerful decoding methods,  
means that members of families of protein folding codes will  
soon be readily identifiable.  Once again this area requires  
mathematical innovation.
        Finally, we note that microscopy is undergoing a technical  
revolution after a long period of plateau.  Two new microscopes,  
scanning tunneling and atomic force microscopes, can yield a  
picture of macromolecules at atomic resolution.  Actually, for  
these computer age microscopes, the picture is represented via a  
computer graphics display of digital data stored on optical  
media.  Additionally, computational methods are the heart and  
soul of electron microscopic tomography.  For example, using  
this technique, one can obtain four−dimensional information on  
chromatin structure (e.g., Belmont et al. 1989).
        It is worth repeating that mathematical biologists in  
structural biology are in great demand.  The theoretical work  
also is highly important and frequently has immediate payoff.   
The medical and commercial importance of structural biology is  
obvious.  

        2.2.2   Molecular Dynamics Simulation

        Three−dimensional structures as determined by x−ray  
crystallography and NMR are static since these techniques derive  
a single average structure.  In nature, molecules are in  
continual motion; it is this motion that allows them to function  
(a static molecule is as functional as a static automobile).   
Mathematical and computational methods have been able to  
complement experimental structural biology by adding the motion  
to molecular structure.  These techniques have been able to  
bring molecules to life in a most realistic manner, reproducing  
experimental data of a wide range of structural, energetic and  
kinetic properties.  Systems studied have extended from pure  
liquid water, through small solutes in water, to entire proteins  
and segments of DNA in solution.   
        The methods used for these calculations provide a glimpse  
of how simulation can be used generally in biology.  Starting  
with a three−dimensional structure, a mathematical formulation  
for the forces between atoms gives the total force on each atom.   
These net forces then are used in Newton’s second law of motion  
to give the accelerations, which are then integrated to give a  
numerical trajectory.  The trajectory provides a complete  
description of the system, giving the position and velocity of  
every atom as a function of time.  It is remarkable that simple  
forces and classical mechanics seem to give such a faithful  



picture of molecular motion.   
        At present, some of the most extensive molecular dynamics  
simulations have been used to study proteins and segments of DNA  
in solution.  Such calculations involve tens of thousands of  
atoms and generate trajectories containing hundreds of thousands  
of structures changing with time; they require hundreds of hours  
of computer time, yet simulate periods lasting less than a  
nanosecond.  As computer power continues to increase, it should  
be feasible to run simulations lasting microseconds (a billion  
time steps) and deal with the largest biological structures (a  
million atoms).  In the limit of these longer time−scales, there  
is a natural connection with analytical and stochastic theories.   
Indeed, such theories provide essential checks on the numerical  
methods used to generate trajectories.  An area ripe for this  
combined approach involves ionic channels, where molecular  
dynamic simulations can provide the frictional constants used in  
analytical treatments.  This provides a direct link to the  
extensively studied phenomenological equations of nerve  
conduction (Hodgkin−Huxley equations).  The molecular dynamics  
method gives a fully detailed description of the system  
simulated; this in turn provides a unique opportunity to  
visualize these molecular systems at work.  Such visualization  
often is accomplished by making a motion picture of the system  
as it changes with time.  Numerical analysis of the trajectories  
also is necessary to calculate properties that relate to  
experimental data.  Better techniques for this analysis are  
sorely needed.  

2.2.3   Drug Design

        Molecules interact strongly when they fit together well.   
This occurs when their three−dimensional shapes are  
complementary and when there are stabilizing interactions  
(hydrogen bonds, charged pairs, etc.).  One of the most  
interesting and potentially useful molecular interactions  
concerns drugs that bind with very high affinities to protein  
and nucleic acid macromolecules and either block the normal  
function of the macromolecule or mimic other ligands for such  
structures as receptors and induce a normal physiological  
response.  Inhibition can be advantageous if the protein is made  
in excess, or if normal cellular control of the protein’s  
activity has been lost.  Because drug binding involves spatial  
complementarity, and because the aim is to design a molecule  
that binds with the highest affinity possible, it should be  
possible to use the three−dimensional structure to aid design.   
Current work in this area has followed several directions.  The  
most direct approach is to crystallize the protein together with  
the drug.  Study of the structure of the complex can suggest  
modifications to the drug expected to enhance its affinity for  



the receptor or enzyme active site.  For this method to work,  
one needs an initial drug known to bind to the protein.  
        Other methods aim to circumvent this requirement by  
deducing the structure of the drug directly from the structure  
of the protein.  While these methods are able to suggest  
completely new drug molecules, they involve a search for  
structures that fit a binding site.  The theoretical  
underpinnings of such searches require further theoretical  
development.  More specifically, they would benefit from  
application of better methods in global optimization and graph  
theory.  

2.2.4   Nucleic Acid Sequence and Structural Analyses of  
        Nucleic Acids

        When a DNA sequence is determined, it is examined for a  
variety of sequence features known to be important: tRNA’s,  
rNA’s, protein coding regionsÑintrons and regulatory regions,  
promoters and enhancers.  Since these sequence features are not  
identical in all organisms, it is often quite difficult to  
identify them.  Even the widely studied bacterium Escherichia  
coli promoter sequences cannot be identified with certainty.  As  
more and more DNA is sequenced, it becomes increasingly  
important to have accurate methods to identify these regions  
without many false positives.  Statistics and mathematics should  
make significant contributions in this area.
        As described above, pairwise alignment of sequences using  
dynamic programming is a well developed area.  However,  
alignment of more than two sequences remains a serious problem,  
with high computation time.  Some recent advances reduce the  
computation time so that 10 sequences might be practical, but  
many problems are not approachable.  Heuristic methods that  
align by building up pairwise alignments have been proposed, but  
they often fail to give good multiple alignments.  Closely  
coupled with multiple alignment is the construction of  
evolutionary trees.  Closely related sequences should be  
neighbors with few changes between them.  
        In the area of DNA structure, several subareas are  
particularly amenable to mathematical analysis:  (1) A complete  
analysis of the packaging of DNA in chromatin.  Only the first  
order coiling into core nucleosomes is understood.  By far the  
largest compaction of DNA comes from higher order folding.  (2)  
Presentation of the topological invariants that describe the  
structure of DNA and its enzymatic transformations.  The goal is  
to be able to predict the structure of interstate or products  
from enzymatic mechanisms and in turn to predict mechanisms from  
structure.  (3) An analysis of the reciprocal interaction  
between secondary and higher order structures.  This includes  
the phenomena of bending, looping, and phasing.



        This work has implications for both biology and  
mathematics.  Mathematics will be impacted in both topology and  
geometry.  Renewed interest in the study of imbedding invariants  
for graphs has occurred because of the enumeration and  
classification topoisomers; the study of random knots has been  
used to study macromolecules in dilute solution, and tangle  
calculus and Dehn surgery theory have been used in the study of  
DNA enzyme mechanisms.
        In the study of kinetoplast DNA, topology and the theory of  
interacting particles have been brought together in a unique  
way.  Finally, in the study of DNA−protein interactions,  
theorems from differential geometry and differential topology  
have been recast in different frameworks to solve helical  
periodicity problems.  The determination of the configuration of  
closed circular DNA brings together the fields of geometry and  
topology and non−linear partial differential equations, or  
topology and Monte Carlo techniques.  These will involve  
extensive use of computational techniques including the creation  
of new codes to use non−linear partial differential equations to  
solve elasticity problems for closed circular rods.

        2.2.5   Structural Analysis of Cells

        Mathematical models have played, and will continue to play,  
an important role in cell biology.  A major goal of cell biology  
is to understand the cascade of events that controls the  
response of cells to external ligands (hormones, transport  
proteins, antigens, etc.).  The problem begins with  
understanding the interaction of the ligand with the cell’s  
surface receptors. For some types of receptors, binding of the  
ligand to the receptor will lead to the generation of a  
transmembrane signal.  For others, aggregation among the  
receptors must occur before a cell response can be triggered.   
The receptors themselves are under dynamic control, up or down  
regulating in response to external ligands, changing their rate  
of capture by coated pits, altering their recycling pattern,  
changing their rate for new receptor synthesis, changing their  
rate of delivery of old receptors to lysosomes for degradation,  
etc.  The signaling pathways that are now being elucidated are  
equally, or more, complex.  The role of mathematical models in  
studying these processes is to help rigorously test ideas about  
mechanisms and pathways, aid in analyzing experiments, determine  
parameter values, and help in the design of new experiments.   
Mechanistic models for some of the stages of the receptor  
pathway already have been developed, e.g., aggregation of  
receptors on cell surfaces (Dembo and Goldstein 1978, Perelson  
and DeLisi 1980), capture of receptors by coated pits (Goldstein  
et al. 1988), receptor−ligand sorting in endosomes (Linderman  
and Lauffenburger 1988), and have been useful in understanding  



receptor dynamics.  Kinetic models have been used to analyze  
studies of ligand binding and internalization for a variety of  
receptor systems.  With models it should be possible to dissect  
the relationship between structure and function.  Thus, for  
example, a large number of mutants of the epidermal growth  
factor receptor have been generated. Determining whether the  
induced change in structure then affects ligand binding,  
tyrosine kinase activity, receptor aggregation, capture of the  
receptor by coated pits, etc. can best be done via collaborative  
experimental modeling efforts.  A major challenge that lies  
ahead is to build mathematical models of specific cell types  
that incorporate all the known biochemistry, and that can be  
used to answer questions about the normal and disease states of  
the cell.  Such an attempt is underway for the red blood cell  
(Yoshida and Dembo 1990), but here the effect of the  
biochemistry on the biomechanics of the cell also is important  
since the shape of the red blood cell is so critical for normal  
function.  Predicting cell shape and the dynamic changes that  
occur in the cell’s cytoskeleton due to interactions at the cell  
surface, which may lead to calcium influxes, receptor  
phosphorylation events, etc., are challenges for future models.

.



Chapter 3

The Impact of Mathematics on Organismal Biology

Organismal (sometimes called organismic) biology deals with all  
aspects of the biology of individual animals and plants,  
including physiology, morphology, development, and behavior.  As  
such, it interfaces cellular and molecular biology at one  
extreme, and ecology at the other.  In the  former, one attempts  
to develop integrative theories of organismal function; in the  
latter, one tries to place individual behavior and function  
within an an environmental context.  Mathematical theorists have  
made signal contributions to organismal biology.  Examples range  
from technological advances to theories of biological structure  
and function, and rely on a wide range of mathematical  
techniques.  We begin this section with a review of some of the  
outstanding examples.

3.1     Accomplishments of the Past

Image reconstruction is of importance across a range of levels  
of organization in biology.  At the molecular scale, work by the  
applied mathematicians Karle and Hauptman in constructing  
algorithms to reveal structure from x−ray data was rewarded with  
a Nobel Prize in 1987.  As discussed elsewhere, on the  
organismic level a Nobel prize was awarded to Cormack and  
Hounsfield for algorithms that permit structure to be determined  
from tomography.  PET and NMR are other areas where mathematical  
analysis is essential.  Past achievements are impressive, but  
they must be supplemented by significant further advances before  
the difficult but vital problem of image reconstruction is  
minimally satisfied.   
        One of the most exciting areas of applications of  
mathematics has been to cardiac function.  A major cause of  
death from malfunction of the heart is the phenomenon called  
ventricular fibrillation, wherein properly coordinated heart  
action is replaced by  purposeless local oscillations of the  
ventricles.  Mathematical modeling has revealed why this  
phenomenon occurs.  Major experimental efforts have been  
suggested by the modeling.  The leading figure in this line of  
theoretical research, Arthur Winfree, received the 1989  
Einthoven Prize for his contributions to the subject.  (This  
prize is awarded every five years to a cardiologist, usually a  
surgeon.)



        In related work, powerful numerical algorithms and  
state−of−the−art computing have been applied by Peskin and  
others to study blood flow in the heart.  Even with the use of  
two−dimensional models, progress has been sufficient to enable  
significant input into the design of heart valves,with resulting  
patents and licensing agreements (see McQueen and Peskin 1983,  
1986).  Three−dimensional models also are under development  
(Peskin and McQueen 1989, Part I; McQueen and Peskin 1989, Part  
II).   
        Another major contribution of mathematics to physiology is  
the theory of cross−bridge dynamics in striated muscle.   
Introduced by A.F. Huxley (1957) and further developed by T.E.  
Hill, Podolsky, Lacker, and others, this theory not only has  
provided a satisfying explanation of the mechanical behavior of  
muscle, but it also has served to provide organizing principles  
for biochemical research on the fundamental energetic and  
control mechanisms of muscle contraction.   
        Mathematical methods for the quantitative description of  
morphogenesis of organs composed of nonmigrating cells  
(including plants, animal bone and skin, and shells) were  
suggested by Richards and Kavanagh (1943) and by Erickson and  
Sax (1956).  These methods, which involve evaluation of velocity  
gradients from empirical data, have provided the  
phenomenological basis for understanding the physiology of  
growth (for reviews see Erickson 1976, Silk 1984, 1989).
        As will be argued in detail below, theory is essential in  
understanding hierarchical systems phenomena in biology.  A  
famous contribution in this area is the theoretical model made  
by Hodgkin and Huxley (1952) of the electrical  signals in the  
squid axon.  This Nobel prize−winning work incorporated the  
findings of a series of brilliant experiments  concerning the  
ion permeability of the axonal membrane into a set of  
mathematical equations that predicted the shape and speed of the  
"action potential" wave that moves down the axon.  Patch clamp  
recordings now permit investigators to relate the Hodgkin−Huxley  
membrane models to the opening and closing of the molecular  
channels that span the membrane and are responsible for their  
ionic conductance.  Hodgkin and Huxley’s inferences from  
macroscopic current measurements have been confirmed in basic  
form, but greatly expanded with respect to their descriptions of  
configurations and transition mechanisms.  In recent years the  
work of Hodgkin and Huxley has found unexpected application in  
non−neural systems in which electrophysiology plays a surprising  
regulatory role.  One example of this is the control of insulin  
secretion by the electrically active beta cells of the pancreas.
        In developmental biology, it was hypothesized decades ago  
that gradients of key chemicals were responsible for triggering  
macroscopic events.  In  recent years, especially since the  
landmark paper of Turing (1952), the gradient idea has been  
greatly elaborated by theorists.  In parallel, experimentalists  



devoted considerable efforts to find the "morphogen" chemicals  
whose gradients were postulated to have such importance, efforts  
that recently have been successful in Drosophila, hydra, and  
limb morphogenesis.   

3.2     Grand Challenges

A wide variety of exciting venues exist for the application of  
mathematical and computational approaches to organismal biology.   
Among these, two stand out as having exceptional promise and  
importance: the study of complex hierarchical biological systems  
and of dynamic aspects of structure function relations.

3.2.1   Complex Hierarchical Biological Systems

        The analysis of complex hierarchical systems is one of the  
most important open areas in modern biology.  This holds true at  
all levels of organization, and is a theme to which we return in  
the discussion of ecological and evolutionary processes.  The  
essence of the matter is this:  On several levels, the  
components of biological systems are being revealed by modern  
experimental biology.  The techniques of molecular biology are  
most important here; other experimental advances are also of  
major utility.  The central theoretical question is, how are the  
molecular details integrated into a functional unity, a question  
central to at least three major fields:  neurobiology,  
developmental biology, and immunology.  We now consider each of  
these areas in greater depth.
        Neuroscience.  Mathematical modeling has made an enormous  
impact on neuroscience.  The Hodgkin−Huxley format for  
describing membrane ionic currents has been extended and applied  
to a variety of neuronal excitable membranes.  The significance  
of dendrites for the input−output properties of neurons was not  
understood before the development of Rall’s cable theory (Rall  
1962, 1964).  Hartline and Ratliff (1972) were pioneers in  
developing quantitative and predictive network models.  In  
addition, Fitzhugh’s work (1960, 1969) demonstrated the value of  
simplified nonlinear models and of qualitative mathematical  
analysis.  The success of these theoretical contributions, and  
the high degree of quantification in neurobiology, ensures  
continued opportunities for mathematical work.
        Recent technical advances in experimentation, e.g., patch  
clamp recording, voltage− and ion−specific dyes, and confocal  
microscopy, are providing data to facilitate further theoretical  
development for addressing fundamental issues that range from  
the sub−cellular to cell−ensemble to whole−system levels.  For  
thorough understanding, we must synthesize information and  
mechanisms across these different levels.  This is perhaps the  



fundamental challenge facing mathematical and theoretical  
biology, from molecule to ecosystem.  How do we relate phenomena  
at different levels of organization?  How are small−scale  
processes to be integrated, and related to higher level  
phenomena?  For example, in modeling neuronal networks, what are  
the crucial properties of individual cells that must be  
retained, in order to address a particular set of questions?   
Most network formulations use highly idealized "neural units,"  
which ignore much of what is known about cellular biophysics.   
We need to develop systematic procedures to derive, in a  
biophysically meaningful way, descriptions for ensemble  
behavior.
        Correspondingly, we seek to identify low−level mechanisms  
from data at higher levels.  The Hodgkin−Huxley theory  
hypothesized that macroscopic currents might be generated by  
molecular "pores"; only much later were these individual  
channels discovered.  Another set of common modeling needs are  
methods for dealing reasonably with the wide range of time and  
space scales involved with different intracellular domains and  
processes, and short− and long−distance interactions between  
cells, and among different cell assemblies.
        At the lowest level, improved biophysical understanding is  
needed of the mechanisms for ion transport through membrane  
channels.  How does the voltage dependence of opening and  
closing rates arise? What accounts for ion selectivity by which,  
for example, channels discriminate among ions of the same charge  
and similar properties?  Theories at this level are beginning to  
involve stochastic descriptions for fluxes (Fokker−Planck  
equations) and simulation methods for molecular structure and  
dynamics.  Kinetic modeling of single channel data is being  
debated hotly with regard to whether a finite or infinite number  
of open/closed/inactivated states are appropriate.   
        The discovery of new channel types continues at a rapid  
pace (Llinas 1988). Of basic interest is how the mix of  
different channel types, and their nonuniform distributions over  
the cell surface (soma, dendrites and axon), determine the  
integrative properties of neurons.  Some cells fire only when  
stimulated, others are autonomous rhythmic pacemakers, and some  
fire in repetitive bursting modes.  Theoretical modeling plays  
an important role here since channel densities cannot yet be  
measured directly, especially in dendritic branches.   
Computational models that incorporate detailed dendritic  
architecture, in some cases known from morphological staining,  
are suggesting  that individual regions of dendrites can perform  
local processing (Fleshman et al. 1988; Holmes and Levy 1990).   
Differential dendritic processing has been implicated in motion  
detection in the visual system (Koch et al. 1986).
        One of the most active pursuits in neuroscience research is  
to discover the mechanisms for plasticity and learning at the  
cellular/molecular level.  The above techniques, together with  



state−of−the−art biochemical methodologies, are beginning to  
yield the information for feasible detailed biophysical  
modeling.  Dendritic spines, NMDA receptor−channels,  
spatio−temporal dynamics of calcium and other intracellular  
second messengers are focal points for these explorations.  Such  
studies are bringing together theoreticians, neuroscientists,  
and biochemists.
        Although theorizing about mechanisms for synaptic  
plasticity is proceeding, disagreement remains about the basic  
mechanism of chemical synaptic transmission.  Two competing  
hypotheses (one involving calcium alone, and the other including  
voltage effects as well) are being explored with fervor, and  
mathematical modeling is a key ingredient in arguments for each  
case.  Many additional experiments have been suggested from  
these debates (see Zucker and Haydon 1988 and Parnas et al.  
1991).
        Models of neural interactions lead to many interesting  
mathematical questions for which appropriate tools must be  
developed.  Typically, networks are modeled by (possibly  
stochastic) systems of differential equations.  In some  
simplified limits, these become nonlinear integro−differential  
equations.  The question now becomes one of proving or otherwise  
demonstrating that the simplified models have the desired  
behavior.  Furthermore, one must characterize this behavior as  
parameters in the model vary (i.e., understand the bifurcations  
in the dynamics).  Another important point that mathematicians  
must address is the extraction of the underlying geometric and  
analytic ideas from detailed biophysical models and simulations.
        The next level of neuronal complexity beyond the single  
cell is the small network with of the order of tens to hundreds  
of neurons.  Such networks have been most extensively studied in  
invertebrates and the sensory or motor systems of vertebrates,  
in which the function of small groups of neurons can be related  
to specific behaviors of the animal (Selverston and Moulins  
1985, Lockery et al. 1989, Kandel 1984). These so−called simple  
systems also are attractive because one can expect to  
characterize their cellular and intercellular properties more  
completely than in vertebrates.  Much research on their  
structural features has been based on the explicit assumption  
that once network structure was understood, functional  
understanding would follow.  Recently, however, many workers  
have come to realize that, even with a great deal of structural  
information, the understanding of functional mechanisms will  
require the development of sound, structurally based theoretical  
models.
        A principal challenge for modelling at this level is the  
development of more biologically realistic computational models  
and mathematical analyses that can provide insight into how  
these networks function.  While these networks involve  
relatively small numbers of neurons, their complexity will  



require increasingly powerful mathematical tools.  At the same  
time, modelling at this level is likely to be especially  
valuable for neurobiology.  In few other neural systems is the  
link between neural structure and behavior more direct.  Thus,  
it is already possible to see in the structure of the nervous  
system its functional correlates.  Also, few other systems  
currently provide the anatomical and physiological parameters  
essential for realistic modelling.  As models for understanding  
the general dynamical properties of such neural networks or for  
understanding the way in which feedback modifies neuronal  
behavior, small neural systems represent a gold mine for  
computational and mathematical neurobiology.
        Coherent brain areas dedicated to particular functions, for  
example primary sensory cortical areas, provide complex  
challenges for computational and mathematical models (Sereno et  
al. 1988). Such areas typically contain multiple types of cells,  
receive inputs from multiple distinct sources, and often are  
heavily interconnected with their links to inter−area recurrent  
or reentrant loops.  Large bodies of anatomical and  
physiological data are available, but the integrative  
capabilities are poorly understood and modelling techniques will  
almost surely be needed to unravel them.
        Developmental neurobiology is a source of biologically  
important and mathematically interesting questions.  Modelling  
at the large network level has played an important role in this  
field, with many collaborations between mathematicians and  
experimental biologists.  Among the important questions arising  
in this field are the topography of connections from one part of  
the brain to another and how these maps might spontaneously  
form.  Many examples exist of such maps in the central nervous  
system; the best characterized are in the vertebrate visual  
system.  The earliest theoretical models and experiments  
concerned the wiring from the retina to the optic tectum.  Many  
models have been proposed and analyzed (Whitelaw and Cowan 1981,  
von der Malsberg 1973, see Linsker 1990 for a review); but as  
new experimental results have become available, many of the  
models must be altered or eliminated.  Recent investigations  
have led to the formulation of minimal hypotheses for the  
explanation of the large body of experimental manipulations  
(Fraser 1985).  These mechanisms are ripe for mathematical  
formulation and analysis.
        Several new technologies, such as voltage sensitive dyes  
and deoxyglucose injection, have led to the discovery of  
beautiful regular maps in the visual cortex of mammals.  The  
patterns include stripes of ocularity and twists and  
singularities of orientation preference.  Models have been  
proposed for these patterns (Miller et al. 1989, Durbin and  
Mitchison 1990) involving mechanisms ranging from  
band−pass−filtered noise, to competitive interactions, to  
Hebbian rules with lateral inhibition.  What must be done is to  



decide what the common idea is that underlies these models, and  
how these mechanisms might possibly be realized in the nervous  
system.
        As we begin to understand the mechanisms of synaptic  
plasticity, it is natural to ask about the consequences of this  
for the behavior of large networks involving plastic elements.   
Only in this way will we understand the relation between  
synaptic plasticity and learning at the organismic level.  This  
has been a major focus in the study of computational properties  
of large scale neural networks across a number of disciplines  
including physics, biology, psychology and mathematics (Hopfield  
1984, Rumelhart et al. 1986).  Mathematical analysis promises to  
provide an important bridge between computational and behavioral  
studies and the empirical results of neurobiology (Poggio and  
Girosi 1990).  An excellent survey is Koch and Segev (1989).   
        Models at the level of the complete organism provide an  
opportunity to make real progress on the long sought unification  
of the behavioral sciences with neurobiology.  Models intended  
to explain behavioral observations (e.g., from psychology and  
ethology) can be cast in terms of underlying neural mechanisms,  
rather than at the phenomenological or control theory level as  
before.  Such models can bring about a new understanding of such  
phenomena as visual illusions (e.g., Treisman et al. 1990), the  
relation between long− and short−term memory and category  
formation.  They will provide significant constraints on  
psychological explanations that have not in the past been easy  
to correlate with the nervous system.  To carry out this  
analysis, one must eventually couple models of the nervous  
system with those of the environment in which the whole system  
exists (Kersten 1990).
        Immunology.  The immune system contains 1012 cells  
comprising at least 107 specificities.  These cells move within  
the body and communicate both by cell−cell contact and via tens,  
maybe hundreds, of regulatory molecules.  The system is capable  
of pattern recognition, learning and memory expression, and thus  
has many features in common with the nervous system.
        Theoretical ideas have played a major role in the  
development of the field.  Controversies such as instructive vs.  
selective theories of antibody formation, germ−line vs. somatic  
mutation models for the generation of antibody diversity, and  
regulatory circuits vs. idiotypic networks, have dominated the  
intellectual development of the field and determined the  
direction of much experimental effort.  Mathematical theories  
have not been nearly as important, but this appears to be  
changing as the field addresses more quantitative issues such as  
the role of somatic mutation in the generation of antibody  
diversity, the role of receptor clusters in cell stimulation and  
desensitization signals, the effects of different concentrations  
of cytokines, receptor affinities, and receptor number on cell  
stimulation, cell proliferation, cell differentiation, and the  



engagement of effector functions.
        Modeling the immune system requires the same type of  
hierarchical approach as does neurobiological modeling.  At the  
lowest level, one must develop quantitative models of the action  
of single lymphocytes as they interact with antigens and  
cytokines.  A large amount of effort involving the study of  
infinite systems of ordinary differential equations and  
branching processes has gone into the mathematical modeling of  
receptor cross−linking by multivalent ligands (cf., Perelson  
1984, Macken and Perelson 1985).  Cell response in terms of  
proliferation or differentiation has been examined from an  
optimal control perspective (Perelson et al. 1976, 1978). The  
effects of the T cell growth factor IL−2 have also been  
incorporated into cellular models (Kevrekidis et al. 1988).  At  
the next higher levels, small idiotypic networks containing two  
complementary cell populations have been modeled, as well as  
networks containing hundreds to thousands of B cell clones  
(Segel and Perelson 1989, Perelson 1989, Weisbuch et al. 1990).   
In the immune system, not only is the number of components  
large, but in distinction to the nervous system, the components  
turn over rapidly.  The average life span of a B cell is of  
order four days, that of serum antibody one to two weeks.  Thus,  
on a rather rapid time scale, many immune system components may  
be replaced, although the system as a whole remains intact.
        New ideas and mathematical representations are required to  
handle systems with large numbers of constantly changing  
components.  Some promising approaches involve the formulation  
of models in terms of a potentially infinite dimensional "shape  
space," wherein emphasis is placed on determining interactions  
among molecules based on their shapes.  In computer models  
binary strings have been used to represent molecular shape, with  
the obvious advantage of fast algorithms to determine  
complementarity and the ability to represent 4 x 109 different  
molecular shapes with 32 bits (Farmer et al. 1986).  To handle  
the perpetual novelty that the elimination of old components and  
the generation of new components introduces into the immune  
system, models can be formulated using "metadynamical" rules,  
wherein an algorithm is used to update the dynamical equations  
of the model depending upon the components present in the system  
at the time of update (Bagley et al. 1989).  One needs to  
understand in a mathematical sense the dynamics of a system in  
which the variables of the model are in constant flux.  What  
does it mean to have an attractor if the variables describing  
the attractor are eliminated from the system before a trajectory  
approaches the attractor?  Formulation of models appropriate to  
unravel the observed complexity in the immune system is the  
first major step.  Next, a massive effort is required to unravel  
the behavioral modes of these complex models and compare them  
with experiment.  Here theoretical immunology merges into the  
mainstream of theoretical biology.



        There are other areas in which we see future growth of  
theoretical ideas in immunology.  For example, vaccine design  
depends on the ability to predict T cell epitopes.  DeLisi and  
Berzofsky (1985) suggested that T cell epitopes tend to be  
amphipathic structures.  Alternative algorithms have been  
suggested (e.g., Rothbard and Taylor 1988), and databases have  
been used to identify sequence patterns characteristic of T cell  
epitopes (Claverie et al. 1988).  This area is clearly one in  
which we will see future growth and which will rely heavily on  
theoretical and computational analyses.
        Understanding the dynamics of HIV infection (AIDS) and its  
effects on the immune system is another important area for  
future research.  Quantitative questions include:  How can the  
CD4+ T cell population be depleted if only one in a hundred  
cells is infected?  Why is there such a long incubation period  
from time of infection to the clinical symptoms of AIDS?  Why is  
this incubation period different in children than in adults?  In  
a seropositive patient, what does the level of serum antibody  
predict about the course of the disease?  Can one define  
quantitative measures of an individual’s chance of infecting a  
sex partner based on antibody or antigen levels measured in the  
blood?  Models also will help in determining the pathogenesis of  
the disease and in isolating primary effects of HIV from the  
secondary effects of immune dysfunction.  Mathematics also can  
play a role in the development of optimal treatment schedules  
and in the design of clinical trials of multiple drug therapies  
for AIDS.  Development of epidemiological models is currently an  
active area of mathematical endeavor and one that will continue  
at a high level as we attempt to track the course of this  
epidemic and develop vaccine strategies aimed at its eventual  
eradication.   
        Genomic regulatory networks.  A fundamental activity over  
the next two decades will involve analysis of the integrated  
structure and behavior of the complex genetic regulatory systems  
underlying development in higher organisms, a massive task since  
the human genome encodes perhaps 100,000 genes.  Its  
accomplishment will require uniting work in molecular and  
developmental genetics with new mathematical and computational  
tools.
        In more detail, recent progress in molecular genetics in  
eukaryotes now is revealing the detailed composition of  
structural genes as well as cis acting regulatory loci such as  
promoters, homeoboxes, and tissue and stage specific enhancer  
sequences, as well as trans−acting components.  These genetic  
elements, together with their RNA and protein products, comprise  
the genomic regulatory network that coordinates patterns of gene  
expression in cell types, cell differentiation and ontogeny from  
the zygote.  Understanding the structure, logic, integrated  
dynamical behavior, and evolution of such networks is central to  
molecular, developmental and evolutionary biology.



        The Human Genome Initiative will provide massive sequence  
data from which we can eventually identify the diverse locations  
in the genome of each regulatory sequence, as well as the  
locations of many or most structural genes.  These data are  
fundamental to understanding the "wiring diagram" of the genomic  
regulatory networks in eukaryotes.  Analysis will require  
development of appropriate computer data bases and development  
of new theory and algorithms in the mathematical theory of  
directed graphs.  Understanding the evolution of such genomic  
networks under the influence of point and chromosomal mutations  
that literally scramble the genomic wiring diagram will require  
new uses of random directed graph theory, stochastic processes,  
and population genetic models.
        In addition to understanding the structure and evolution of  
genomic regulatory networks, we must understand the coordinated  
behavior of such systems that integrate the behavior of 100,000  
molecular variables.  It is here, in the effort to relate the  
information that we can achieve about small parts of the genomic  
system to the overall behavior of the integrated system, that a  
new marriage of mathematics and biology must be found.  We have  
no hope of understanding the integrated behavior of such complex  
systems, linking the "microlevel" of structure and logic with  
the macrolevel of behavior, without mathematical theories.   
While no approach is yet clearly adequate, new avenues are  
available.
        A first approach is via ensembles.  Statistical mechanics  
is the paradigmatic example of a theory that links microscopic  
and macroscopic levels.  There it is possible to explain  
macroscopic behaviors without knowing all the details of the  
microscopic dynamics.  Similarly, it may be possible to build up  
statistical understanding of the integrated behavior of  
extremely complex genomic regulatory systems without knowing all  
the details of microscopic structure.
        Molecular genetic techniques reveal small scale features of  
genomic systems such as the sequences that regulate a gene, and  
biases in the "rules" governing the activity of genes as a  
function of their molecular inputs.  Using these local features,  
one can construct mathematically the ensemble of all genomic  
systems consistent with those local constraints.  This ensemble  
constitutes the proper null hypothesis about the structure and  
logic of genomic systems that are random members of such an  
ensemble.  Thus the typical or generic behavior of ensemble  
members are predictions about the large−scale features of random  
members of the ensemble.  This is a new kind of statistical  
mechanics, averaging over ensembles of systems (Kauffman 1969,  
1974, in press, Derrida 1981). If the distributions of  
properties parallel those seen in genomic regulatory systems,  
then those properties may be explained as consequences of  
membership in the ensemble.  Indeed, past work based on this  
approach (Kauffman 1969, 1974, in press) has shown that many  



features of model genomic systems parallel, hence may explain, a  
number of features of cell differentiation such as the numbers  
of cell types in an organism, the similarity of gene expression  
patterns in different cell types in an organism, and other  
statistical features.  Improved ensemble models, coupled with  
population genetic models, offer hope of understanding how  
evolution can mold the structure, logic, and behavior of  
integrated genomic systems.
        A second approach may be the development of new  
mathematical and experimental tools to "parse" the genomic  
system into structurally or functionally isolated subcircuits.   
Thus, clusters of genes may be regulated in overlapping  
hierarchical batteries, or some genes may fall to fixed steady  
states of activities that are common to many or all cell types,  
while other subsets of genes oscillate or exhibit complex  
patterns of temporal activity unique to different subsets of  
cell types.  Analysis of such temporal patterns by time series  
techniques, and based on temporal series of two−dimensional  
protein gel data, where each gel shows the synthesis patterns of  
up to 2000 genes at a time, may help resolve the genome into  
behavioral "chunks."  If so, this will help block out the  
overall behavioral organization of the genomic system.   
Thereafter, analysis of detailed midsized subcircuits, with  
perhaps several to 100 or so genes, will require use of promoter  
constructs allowing activation or inhibition of arbitrary genes  
in arbitrary cell types at arbitrary moments, with analysis of  
the cascading consequences.  Union with dynamical systems theory  
for modestly small systems, where the "inverse problem" of  
guessing plausible circuitry to yield observed synthesis  
patterns is practical, then can be carried out.
        Developmental biology.  As already described, mathematics  
can play a crucial role in connecting different levels of  
organization.  What biologists seek are molecular level  
explanations of supramolecular phenomena.  For example,  
embryogenesis involves the coordinated movement and  
differentiation of cell populations.  Biologists would like to  
understand this in terms of chemistry and genetics.  To  
understand organismal biology is to understand how high−level  
coherent organization results from mechanisms operating at the  
molecular level.  The essence of the problem is to build from  
one level to another.  How can we bridge this gap?
        The mathematical, analytical, and numerical problems posed  
by the nonlinear systems of partial differential equations that  
arise in modeling developmental processes are extremely  
challenging and interesting.  Reaction diffusion equations, for  
example, as discussed earlier, have already stimulated the  
creation of new mathematics to study the wide spectrum of  
solution behaviors exhibited by these equations.  The numerical  
simulation techniques to investigate solutions in three  
dimensions are still very difficult and need a great deal of  



further refinement to be useful practically.  Mechanochemical  
models for generating pattern formation deal with more directly  
biological quantities (see Murray 1989 for a general survey of  
these and other pattern formation models); but they are more  
complex than, for example, the Navier−Stokes equations, which  
govern fluid flows, and possess a correspondingly richer  
solution behavior.
        Bifurcation theory, linear analysis, and singular  
perturbation methods already have revealed new phenomena.   
Numerical simulation, particularly with the mechanochemical  
models, is challenging even in two dimensions.  Real biological  
applications require solutions in three−dimensional domains  
whose sizes increase in time.  New analytical and numerical  
simulation techniques as well as novel visualization methods  
will have to be devised before we can explore the sophisticated  
solution behaviors of such models.  Unfortunately, the methods  
developed for Navier−Stokes equations frequently are not  
adequate to cope with the new models that arise in biology.
        Recently, several advances in experimental biology (e.g.,  
recombinant DNA technology, computer enhanced imaging) have  
created new databases so extensive and complex that mathematical  
and computational approaches are essential to make sense of  
them.  For example, a network of perhaps 60 cross−regulating  
genes has been shown to regulate early development in  
Drosophila; similarly, cell motility, which underlies  
morphogenesis, is driven by the cellular cytoskeleton, whose  
mechanochemical regulation is controlled by a network of more  
than 40 regulatory molecules.  These systems should catalyze new  
collaborations between biologists and mathematicians to deduce  
the macroscopic consequences of newly revealed molecular  
mechanisms.  Below we illustrate the general case with a few  
specific examples.
        In the past five years, recombinant DNA technology advances  
have produced an unprecedented molecular−level data base  
documenting a complex network of genes that code for proteins  
that control the expression of other genes.  Mathematics can  
compute the macroscopic pattern formation consequences of this  
molecular level information.  Indeed, mathematical analysis may  
be the only way to synthesize the global picture from the  
molecular level parts, given the apparent complexity of genetic  
networks, in which each gene’s expression is modulated by many  
other genes.
        Computer graphics can be used to visualize data and the  
dynamical behavior of mathematical models.  Many instruments in  
the biologist’s arsenal (e.g., the confocal scanning laser  
microscope, gene sequencers) gather data into a computer−based  
graphical data base.  Modern computer graphics technology makes  
it possible to display, dynamically and pictorially, the dynamic  
behavior of a mathematical model in the same form in which  
experimental data are stored.  This technology should become the  



common way to compare the behavior of a quantitative model with  
the data it purports to explain.  Moreover, this same technology  
yields the fastest and most compelling medium of communication  
between mathematical modelers and biologists.
        Using immunofluorescent probes to cloned gene products and  
scanning confocal laser microscopy on whole mount Drosophila  
embryos, one may now obtain three−dimensional stereo  
reconstructions of the temporal evolution and spatial expression  
pattern of each of the genes that organize future morphological  
segmentation of the larva.  Similarly, it is possible to observe  
intracellular and intercellular events such as cytoskeletal  
reorganization, calcium transients, distribution patterns in  
cell adhesion molecules and putative morphogens in real time.   
Thus, a model of early pattern formation and/or morphogenesis  
(Edgar et al. 1989) in the Drosophila embryo, if it is correct,  
should produce the same output that confocal microscopy gathered  
as input.  The intellectual challenge is to understand how the  
gene network, operating identically in every cell, results in  
globally coherent spatial pattern as a consequence of temporal  
biochemical dynamics.
        Theoretical models have stimulated a great deal of  
experimental work in developmental biology.  Here we briefly  
describe three major classes of models that illustrate the way  
in which mathematics provides a framework for connecting  
information at the micro level to macro level observations.
        Spatial patterns can be created according to the classical  
local activation lateral inhibition mechanism (Keller and Segel  
1970, Oster and Murray 1989). A purely chemical mechanism for  
pattern formation (but not morphogenesis) was proposed by Turing  
(1952).  In this model activator and inhibitor morphogens  
diffuse at different rates and react with one another.   
Mathematical analysis shows how spatially heterogeneous patterns  
of morphogen concentration can arise.  For pattern to emerge, it  
is necessary that the activator be relatively short−range  
relative to the inhibitor, i.e., that the activator diffusion be  
relatively slow.  If cells can sense the morphogen level and  
respond, then we have a molecular mechanism for Wolpert’s (1969)  
notion of "positional information," one of the most influential  
concepts in modern developmental biology.  Although chemical  
gradients have been suspect in biological pattern formation for  
over 100 years, it is only recently that their existence has  
been unequivocally demonstrated (e.g., the bicoid protein in  
Drosophila, and retinoic acid in vertebrate limb development).   
However, morphogenesis may not be a purely chemical phenomenon  
in which cells merely respond to pre−existing chemical patterns.   
        One possibility is the generation via chemotaxis, the  
response to a chemical gradient.  The classical example is the  
slime mold Dictyolstelium, where cells produce the  
chemoattractant (cAMP) as well as a chemokinetic morphogen  
(ammonia).  Starting from the view that morphogenesis is, at  



least proximally, a mechanical event, several modelers have  
shown that the same spatial patterns that arise in Turing models  
can be produced by biomechanical models whose variables are  
cellular stresses and strains.  These mechanochemical models  
have stimulated experimental programs to address their validity  
(Wolpert and Hornbruch, in press).   

3.2.2   Dynamic Aspects of Structure−Function Relationships

        The relation between structure and function is a central  
theme of classical biology.  Some mathematical models have  
already illuminated problems in this area.  For instance,  
McMahon and Kronauer (1976) modeled the tree branch as a beam of  
greatest lateral extent.  Another example involves the  
biomechanics of feeding of aqueous organisms.  Solving the  
Navier Stokes equations for flow through small, bristled  
appendages, Cheer and Koehl (1987) have shown how the geometry  
permits the appendage to function either as a paddle or a rake.
        In temporally shifting systems, the description of  
structure−function relations remain especially elusive; and it  
is here that mathematical modeling is particularly essential.   
In physiology, for example, only by solving the appropriate  
equations of fluid mechanics and elasticity can one understand  
the relationships between the structure of the heart and its  
function of providing appropriate blood flow, and changes in  
blood flow, in response to changing environmental conditions.   
Similar remarks apply to other organs, for example, the kidney.   
Here fluid mechanical considerations play a role, but the  
details of chemical reactions are perhaps even more crucial to  
describe accurately.  The interplay between chemistry and solid  
and fluid mechanics is similarly important in the description of  
plant growth.
        Organ physiology is a natural target for mathematical and  
computer modeling.  Such models can serve a three−fold purpose:   
to understand the normal structure−function relationship of the  
organ, to study the mechanisms and impact of disease processes,  
and to aid in the design of artificial devices that can be used  
to repair, assist, or replace the organ.  For plants one can add  
the possibility of aiding breeders by identifying structures  
that optimize performance.
        In the case of the heart, a computational method has been  
introduced (Peskin and McQueen, 1989) to solve the coupled  
equations of motion of the muscular heart walls, the elastic  
heart valve leaflets, and the viscous incompressible blood that  
flows in the cardiac chambers.  Variants of this method have  
been applied to other problems in bio−fluid dynamics, including  
platelet aggregation during blood clotting, aquatic animal  
locomotion, and wave propagation along the basilar membrane of  
the inner ear.  In the heart itself, the method has been used to  



study the optimal timing of events of the cardiac cycle, to  
simulate a disease state involving prolapse of the mitral valve,  
and to conduct parametric studies aimed at the optimal design of  
prosthetic cardiac valves.  At the level of mechanics, another  
set of challenges is to develop theories for explaining the  
heart’s structural components: the orientation and layering of  
muscle fibers in the ventricles, the position and makeup of the  
heart valves.
        Cardiac contraction is mediated by propagation of  
electrical activity over the three−dimensional multi−cellular  
musculature.  Disturbances in this electrical system result in  
arrhythmias; the most severe of these is ventricular  
fibrillation, the principal cause of death after a heart attack.   
This is an active area of modeling research, with many open  
avenues to explore:  the ionic channels underlying the cardiac  
signal (Noble 1962); the effects of spatial inhomogeneities, say  
from damaged tissue; the consequences of discreteness (finite  
cell size and gap junction coupling); and the fundamental nature  
of synchronization and sustained propagation patterns in three  
dimensions (Winfree 1990).
        Other organ systems under intense investigation, which  
cannot be understood without the help of mathematics, include  
the kidney and pancreas.  The kidney’s countercurrent mechanism  
achieves a substantial separation of water and solutes, which  
determines, under the influence of antidiuretic hormone, whether  
a dilute or concentrated urine will be excreted.  A key  
difficulty in this field is that the basic laws governing the  
transport of ions and molecules (e.g., Na+, Cl−, urea, and  
water) across the walls of renal tubules are quite different in  
different parts of the nephron (the fundamental unit of renal  
function), and are in many cases unknown.  Differential equation  
models are leading to considerable insights in this area by  
illustrating the physiological consequences of different  
assumptions and therefore suggesting experiments critical in  
distinguishing the possibilities (Stephenson 1972, Layton 1989,  
Weinstein and Windhager 1985).  The many nephrons in a kidney  
are spatially distributed in a particular way; modeling will be  
invaluable in helping us to understand the reasons.   
        The pancreas also plays a key role in homeostasis, the  
control of the body’s internal environment in which cells must  
operate.  Although the classical view of homeostasis is based on  
steady−state notions, the release of insulin for metabolic  
regulation actually occurs in a rhythmic, pulsatile manner  
(period of 10 minutes or so), which appears to involve a  
hierarchy of oscillatory time scales.  Release by cells in the  
islet (the functional unit of the pancreas) is correlated with  
their electrical activity, which exhibits a 5Ð10 second  
oscillation in response to glucose.  Modeling, analogous to that  
for ionic currents in neurons, is helping to identify how the  
cellular oscillations arise, how cells are synchronized, and  



what are possible glucose−sensing mechanisms (Keizer 1988,  
Sherman et al. 1988, Rinzel 1990).  Further challenging  
questions have to do with coupling between electrical activity  
and release, and interactions among the million or so islets in  
the whole pancreas.
        In organ morphogenesis, important challenges for future  
work include finite element analyses of mechanical stress fields  
in the cellular continuum of growing tissue; optimization models  
to understand the functional significance of morphologies; and  
hydrodynamical models for nutrient transport in plants and  
animals (including marine invertebrates).  Another interesting  
class of problems involves demographic models to predict cell  
cycle duration, age distribution, and family trees of cells in  
developing tissue (Bertaud and Gandar 1986).  Kinematic analyses  
could be used to help unravel the physiological significance of  
gene products recently found to be correlated with the events of  
the cell cycle (reviewed by Murray and Kirschner 1989).   
        One of the strengths of mathematics is, of course, the  
ability to contend with temporally varying phenomena, and in  
particular to use models to deduce mechanism from kinetic data.   
It is a theme of modern biology, which has been reiterated several  
times in this report, that what has previously regarded as static  
has now been understood to be dynamic.  We have just cited the  
dynamic nature of pancreatic homeostasis.  An example of similar  
type is the hormonal regulation of ovulation that has been shown  
in the laboratory of Knobil to involve pulsatile secretion of the  
relevant hormones with a periodicity of about one hour.  This too  
is an especially fertile field for mathematical investigation.   
The book edited by Goldbeter (1989) is a source for up−to−date  
references for theoretical work on this and many other dynamical  
problems in physiology.
.



Chapter 4

The Impact of Mathematics On Ecology and Evolutionary Biology

Ecology and evolutionary biology encompass a broad range of  
levels of biological organization, from the organism through the  
population to communities and whole ecosystems, and a tremendous  
range of spatial and temporal scales.  Aspects of it have been  
discussed in the earlier sections, from phylogenetic  
reconstruction to organism−environment interfaces.  The grand  
challenges identified earlier, in particular, analysis of  
structure−function relations and the integration of phenomena  
occurring at different scales are of particular relevance both  
to ecology and to evolutionary biology.   
        Autecology refers to the interaction of organisms with  
their environments, including aspects such as physiology,  
morphology, and behavior.  Some related aspects of organismal  
biology have been covered in the preceding section.  The need  
for enhanced mathematical and computational ability is most  
evident when one attempts to couple large numbers of individual  
units into highly interactive networks.  Individual−based models  
of populations provide a case in point, as do spatially  
distributed analogues of simpler dynamic models.   
Computationally intensive areas of autecology include those  
linking neurobiology with behavioral models for tasks such as  
search, and the modeling of spatial pattern formation through  
interacting particle systems or partial differential equations.
        Population biology deals with the basic and applied aspects  
of ecological and evolutionary change, including links to  
resource management, epidemiology, and demography.  The rich  
theoretical literature in this subject, including the work of  
such giants as Lotka, Volterra, and Kostitzyn in ecology;  
Fisher, Wright, and Haldane in genetics; and Kermack and  
McKendrick in epidemiology, has greatly influenced the  
development of fields as diverse as dynamical systems theory on  
the one hand, and probability and statistics on the other (see  
the earlier section of this report).  As already discussed,  
May’s demonstration of how chaotic behavior could arise in  
simple dynamical models was a catalyst for the development of  
that aspect of dynamical systems theory, and interest in the  
dynamics of epidemics has spurred research in  
differential−difference equations and integro−differential  
equations, an area pioneered by Volterra in the classical models  
of mathematical ecology.
        Population biology thus includes a dauntingly diverse  



assemblage of topics, including, for example, the construction  
of phylogenetic trees from data sets, the interface of game  
theory and population genetics, the ecology and evolution of  
quantitative characters, molecular evolutionary dynamics, and  
human population genetics.
        Among the critical computational problems in population  
biology are those that relate to data base management in the  
examination of risk groups for epidemiological models, for  
example, the classification of sexual behavior and its  
relationship to the spread of AIDS; categorization and analysis  
of information on the global environment, being collected by  
means of remote sensing techniques; and the manipulation of data  
bases, such as those derived from sequence analysis, and their  
use in interpreting phylogenetic histories.  Dynamic aspects  
relate to models of the spread of disease in heterogeneous  
populations; the interaction between evolutionary biology and  
neural networks, as reflected in the view of evolution as a  
combinatorial optimization problem in a very high dimensional  
space; more sophisticated game theoretical approaches to  
evolution; and quantitative genetics.
        Communities and ecosystems include the study of how  
assemblages of species are organized in space and time, and how  
these assemblages interact with each other and the physical  
environment.  One area that has received great interest is the  
analysis of the organization of trophic webs Ñ the very  
compilation and storage of data from hundreds of webs collected  
by ecologists introduces substantial problems of data storage  
and retrieval.  Cohen’s analysis of the consistent patterns  
exhibited by these webs (Cohen 1978) demonstrates how  
sophisticated mathematical analysis can lay bare patterns in the  
balance of nature.  Biogeochemical cycles represent a  
complementary aspect of the dynamics of ecosystems; and the  
analysis of patterns in these cycles, and how they respond to  
different stresses in different ecosystems is of fundamental  
importance.  The analysis of ecosystems, and especially of the  
transfer of energy and nutrients within the biota and between  
the biota and its physicochemical environment, involves a class  
of problems of considerable applied importance.
        Agroecosystems, ecotoxicology (the responses of ecosystems  
to chemical stresses), landscape ecology, and global change  
represent other areas of importance. The study of agroecosystems  
raises problems from the characterization of rates of spread of  
pest species (for which the mathematical results of Kolmogorov  
et al. (1937) provide the mathematical underpinnings, and for  
which models and approaches borrowed from percolation theory and  
interacting particle systems allow the extension to fragmented  
habitats) to issues of management, as represented by dynamic  
programming approaches to integrated pest management, among  
other problems.  Ecotoxicology trades heavily on  
diffusion−advection models of spread, and on multivariate  



statistical methods for the analysis of the fate, transport, and  
spread of chemicals.

4.1     Accomplishments of the Past

For interdisciplinary work, such as theoretical and  
computational biology, a success occurs in one or more of three  
ways.  First, new mathematics can develop from the biological  
problem.  Second, the theory can affect in a fundamental way the  
world view of biologists, most of whom are not theoreticians.   
Third, the theoretical contribution can lead to modifications of  
practice.  Ecology and evolutionary biology have had numerous  
instances of each kind of success.   
        The application of mathematical methods in this area is a  
very old enterprise; as already discussed, it spans a range of  
topics from the very basic to the very applied (Hallam and Levin  
1986, Levin, Hallam, and Gross 1989, May 1981, Roughgarden  
1979).  Demographic methods have been applied to the study of  
human and nonhuman populations for centuries (see for example  
Keyfitz 1977) and form the basis both for population projections  
and for the understanding of the population consequences of life  
history phenomena (Cole 1954).  The interface with population  
genetics, and more recent game theoretical approaches, have  
produced a rich mathematical literature that forms the basis for  
our understanding of the evolution of the living world.  At the  
other extreme, mathematical models have been fundamental in  
describing the fate and transport of pollutants in the  
environment (Levin et al. 1989), the spread of agricultural  
pests, the dynamics and control of epidemics, the management of  
renewable and nonrenewable resources, and the response of  
ecological systems to stresses such as toxicants, acid  
deposition, and global climate change.

        4.1.1   The Synthesis of Population Genetics and Evolutionary  
Biology   

        A major role of mathematical biology, and of biology in  
general, must lie in aiding our understanding of the evolution  
of the living world.  The theory of evolution by natural  
selection, and the associated extensions that include the  
neutral theory, relate to the central organizing principle of  
modern biology.  A key aspect of the elaboration of that theory  
lay in the mathematical contributions of Fisher, Haldane, and  
Wright, already discussed, and in relating evolutionary change  
to the underlying genetic mechanisms (see Provine 1971).   
        The suggestion that most molecular genetic variation within  
a species and between species is selectively neutral (i.e., has  
no adaptive or functional significance) stimulated a great deal  



of mathematical work on random changes in allele frequencies due  
to sampling effects in finite populations.  Diffusion  
approximations to finite population models have been employed  
successfully to understand the amount and pattern of genetic  
variation in populations, including sampling properties (work by  
Kimura 1983, Ewens 1972, Watterson 1977, Griffiths 1979).  The  
mathematical analyses of these models had an enormous impact on  
the biological view of molecular genetic variation and led to  
the development of statistical tests and estimation procedures  
useful in the analysis of enzyme polymorphism and sequence  
variation (see Nei 1987 for examples).  This theoretical and  
empirical work also stimulated important work on models with  
random temporal and spatial variation of selection coefficients  
by J. Gillespie (1978).  
        Modern topics of fundamental interest that involve  
considerable mathematical content include punctuated  
equilibrium, coevolution, and sociobiology.  Quantitative  
methods have been involved intimately in the development and  
logical structure of sociobiology, broadly construed to  
encompass all interactions among individuals that affect  
reproductive success.  Quantitative theory has been instrumental  
both in establishing the hypothesis itself within an  
evolutionary framework (cf. Hamilton 1964, Cavalli−Sforza and  
Feldman 1981) and in testing and revising the fundamental theory  
(see developments of relatedness, e.g.,  Hamilton 1964,  
Uyenoyama and Feldman 1980.   

4.1.2   Autecology

        Classic studies in heat balance in leaves and plant parts  
(Raschke 1960, Gates 1965) and animals (Porter and Tracy 1973)  
were used to predict "climate space," the set of microclimate  
variables (exposure to sunlight, wind, etc.) consistent with  
maintaining body temperature within non−lethal limits, and to  
predict activity times of animals and whole plant water and gas  
exchange.  Cowan (1965) used electrical circuit analogues of  
flow of water from roots to leaves and out through stomatal  
pores to predict the onset of wilting.  More recently, plant  
physiologists have developed models to represent photosynthesis  
and carbon allocation at scales ranging from biogeochemical  
(Farquhar et al. 1980) to global.  These models draw from  
studies of physiology, biophysics, and adaptation, and are  
important tools in theoretical and applied studies of plant  
biology.  Similarly, a range of models exists for transpiration,  
many based on the Penman−Monteith formulation for surface energy  
balance (Monteith 1973), but with many versions including more  
sophisticated biology.  Models include relationships between  
carbon assimilation and water use based on optimization  
principles (Cowan and Farquhar 1977) or on isotope  



discrimination during carbon assimilation.  These models can be  
used in applications ranging from crop production, through  
evolutionary studies of plant adaptation, to examination of the  
role of vegetation in global climate change.
        Other work of considerable importance in this area,  
focusing on the relationship between the structure of an  
organism and its ability to function in its environment (see for  
example, McMahon and Kronauer 1976, Wainwright 1976, Vogel 1988,  
Cheer and Koehl 1987) already has been discussed in the previous  
section.

4.1.3   Population Biology

        Population modeling and population projection have been an  
important part of demography and ecology since the pioneering  
contributions of John Graunt (1662).  Demographic methods have  
been applied to the study of human and nonhuman populations for  
centuries (see e.g., Keyfitz 1977) and form the basis for  
population projections and for the understanding of the  
population consequences of life history phenomena (Cole 1954).   
These mathematical methods provide organizing principles for  
collecting and analyzing data on the rates of fertility and  
mortality.  Such analyses are now commonplace in many areas of  
population biology and are applied to numerous species, ranging  
from humans to insects of economic importance (Keyfitz 1977,  
Carey, in press).  The theory of age structured populations, and  
the theories built on Leslie’s matrix and the Perron−Frobenius  
operator theory are among the most elegant and important  
advances of mathematical biology.  Recent  advances treat other  
aspects of population structure (e.g., Nisbet and Gurney 1982)  
and open population systems (e.g., Roughgarden et al. 1985).   
        The seminal work of Volterra and Lotka on predator−prey  
mechanisms showed how simple assumptions could lead to sustained  
oscillations of predator and prey populations.  The  
predator−prey models of Volterra and Lotka rarely are taken  
literally.  Yet they have formed the cornerstone of the subject,  
being the point of departure for more sophisticated models, and  
stimulating both experimental studies of individual behavior and  
further mathematical studies of the bifurcation properties of  
systems of continuous time differential equations.
        Related closely to these predator−prey models are  
complementary models of competing organisms; again, the original  
models assume a simple quadratic form but have stimulated more  
sophisticated approaches.  The theory of the ecological niche  
(see for example, Whittaker and Levin 1975) and the associated  
theory of competitive exclusion, among the most influential  
concepts in community theory, derive in large part from the  
mathematical approaches.  Other work dependent upon it has  
examined the limits to similarity and niche width of coexisting  



species (MacArthur 1972), studies of coevolution and character  
displacement (Roughgarden 1979, Slatkin 1980, Fenchel and  
Christiansen 1977), and stochastic models of competition and  
predation.
        One of the greatest successes of mathematical theory has  
been the application of diffusion models and their extensions to  
the spread of populations.  The methods have been available, of  
course, for over a century (Skellam 1951), and early successes  
in the theory of epidemics occurred shortly after the turn of  
the century (Brownlee 1911).  But the first major advances came  
from population genetics, especially the work of Haldane (1937)  
and Fisher (1937), and later work by Mal cot (1969) and (in a  
discrete setting) Kimura and Weiss (1964), Maruyama (1977), and  
others.
        Fisher modeled the spread of an advantageous gene through  
the use of diffusion−reaction equations, hypothesizing that, in  
the generic case, allelic spatial distributions would relax to  
ones characterized by fronts, spreading at the rate of twice the  
product of square root of the diffusion coefficient and the  
maximal selection coefficient.  This remarkable insight was  
confirmed in simultaneous mathematical analyses by Kolmogorov et  
al. (1937), and has been a stimulus to much modern mathematical  
work (e.g., Bramson 1983, Aronson and Weinberger 1978).  In  
ecology, there are direct analogues (Skellam 1951, Okubo 1980),  
and such models have been applied to study the rate of advance  
of invading species (Lubina and Levin 1988, Andow et al. 1990).   
Kareiva (1983), stimulated by the mathematical theory, examined  
the link between these population level descriptions and the  
individual movements of foraging insects.
        Closely related to this work, and building upon it, has  
been the development of models to explain patchiness in the  
distribution of organisms (e.g., Steele 1978, Segel and Jackson  
1972).  This has stimulated research into critical patch size  
(Skellam 1951, Kierstead and Slobodkin 1953, Okubo 1980) and  
other mechanisms for generating and maintaining non−uniform  
spatial distributions (Levin 1979).   
        Evolutionary approaches to ecological problems have had a  
tremendous growth and influence over the past two decades.   
Maynard Smith (1982) applied theoretical approaches to  
evolutionary problems.  Earlier, optimal foraging theory (Emlen  
1966, MacArthur and Pianka (1966) linked behavior and  
optimization by the assumption that certain behaviors had been  
optimized by natural selection.  Optimal foraging theory  
stimulated considerable biological research, including more than  
100 empirical tests of the theory (through 1986, reviewed in  
Stephens and Krebs 1986).  The most recent conceptual advance in  
this field involves the use of stochastic dynamic programming  
and computational methods to derive biological insights (Mangel  
and Clark 1988).  This latter work shows one of the first  
instances in ecology (although common in physics and chemistry)  



of gaining biological insight through numerical computation.  
        Life history theory (Cole 1954) has been a fundamental and  
active area of research, providing a link between demographic  
and evolutionary theories.  Problems of interest include  
senescence (evolution of the mortality schedule, Hamilton 1966),  
the timing of reproduction and tradeoffs with respect to  
mortality (Cole 1954, Caswell 1982), dispersal and dormancy  
(Cohen 1966, Cohen and Levin 1987) and density−dependent  
selection on equilibrium population sizes (Roughgarden 1979).  

        4.1.4   Epidemiology of Infectious Diseases   

        The mathematical theory of infectious diseases, pioneered  
by Ross, MacDonald, Kermack and McKendrick, and others, has been  
an important applied tool, especially for the establishment of  
vaccination strategies.  (See various papers in Levin, Hallam,  
and Gross 1989.)  Recently, Anderson and May (1979) and May and  
Anderson (1979) stimulated a renaissance of activity in this  
area, especially involving viral diseases such as influenza (Liu  
and Levin 1989, Castillo−Chavez et al. 1988, 1989); rubella  
(Hethcote 1989); myxoma (Dwyer et al. 1990); and AIDS (Anderson  
and May 1987, Castillo−Chavez et al. 1989, Castillo−Chavez  
1989).
        Models of gonorrhea transmission were used to evaluate the  
effectiveness of strategies to combat the rapid rise in  
gonorrhea incidence in the United States in the 1960’s.  The  
initial step was the formulation and analysis of a simple model  
(Cooke and Yorke 1973), which was later extended to incorporate  
a "core" group of highly sexually active individuals.  Tracing  
and treating the sexual contacts of members of the core group  
was shown to be a more cost−effective control than random  
screening of asymptomatic women (Hethcote and Yorke 1984).  The  
work of Hethcote and Yorke has been one of the success stories  
of the application of mathematical models in epidemiology to  
influence management practice.

4.1.5   Fisheries Management  

        Fisheries management has proved a fertile area for the  
interaction of mathematics and biology.  Fisheries managers  
recognized early that the problems involved were not only  
difficult, but could benefit considerably from a quantitative  
approach.  The biological side has contributed concepts of  
nonlinear maps such as the Ricker map.  Many mathematical  
methods of optimal control and adaptive management (Clark 1985,  
Walters 1986) have been developed to solve problems in fisheries  
management.  The recent work on non−classical control problems  
by Clark (1985) was directly motivated by the problems of  



irreversible investment in fisheries.  The  methods developed by  
Clark, Walters, Ludwig and their students and colleagues are  
currently applied worldwide to manage renewable resources.   
        A strong link also exists between fisheries management and  
evolutionary ecology.  Although allozyme variation has been used  
for about 20 years in the study of evolutionary processes, in  
the last 10 years such variation also has been used to provide  
genetic "markers" that can be used to assess the composition of  
populations.  This method, called Genetic Stock Identification,  
currently is used in Washington and California to determine the  
composition of oceanic mixtures of salmon in terms of the  
contributing source stocks.  Because of the complexities of the  
analysis, the teams working on this problem always involve  
biologists and mathematicians.  The calculations are done by use  
of the EM algorithm (Dempster et al. 1977).  

4.1.6   Community and Ecosystem Processes

        Historically, the applications of mathematics to community  
and ecosystem level processes have been of two types:  the  
simplistic dynamic approaches patterned after the Lotka−Volterra  
theory, and descriptive multivariate methods, of which Whittaker  
(1975) was the most important practitioner.  Recently, however,  
a number of directions that blend theory and data have proved  
promising.   
        Understanding the causes of vegetation change has been an  
important long−term goal  of ecology.  A recent class of models  
has linked individual−based simulations of populations to models  
of detritus composition and nutrient release.  Because species  
differ in the chemistry of their detritus, and because this  
difference influences decomposition and nutrient release, this  
class of models exhibits a rich behavior that mimics real  
systems.  It is becoming apparent that these models exhibit a  
rich array of dynamical behaviors, including deterministic chaos  
and multiple stable states.  These models provide important  
information on plant community processes, constraints over  
selection and biogeochemistry.  The development of  
succession/production/decomposition models is continuing with  
applications to paleobiology and global change.  
        One of the most important advances in community theory in  
the past decades has been the recognition of the patchy nature  
of most systems, and the importance of spatially localized  
disturbances in maintaining diversity.  The seminal paper here  
was Watt (1947), but its influence was negligible for a quarter  
of a century.  More recent work in the marine intertidal (Levin  
and Paine 1974, Paine and Levin 1981), in forests (Pickett and  
White 1985), and in other systems has made this one of the most  
active areas of research in ecology.
        A number of important studies in biogeochemistry have  



relied heavily on simulation models.  Dynamic watershed models  
simulate water movement and biogeochemical reactions affecting  
soil and lake water chemistry, and have been central to  
integrated assessment of aquatic effects of acid deposition.   
They have been used as heuristic tools to improve understanding  
of watershed dynamics and as bases for projecting regional  
responses of watersheds to changes in acidic deposition.  The  
comparison of the mathematical basis of these models, their  
calibration and application to watersheds that differ in size,  
slope and geology, and the experiments that these models have  
stimulated have been a significant component of the national  
integrated assessment of acid deposition effects.  Similarly,  
the Parton et al. 1988, Schimel et al. (in press), and Pastor  
and Post 1988 models have been used to analyze the effects of  
climate change on carbon and nitrogen biogeochemistry.   
        The early developments in ecosystem analysis also dealt  
with problems concerning the transfer of energy and materials  
among biota and their physico−chemical environment.  The  
relevant models were composed of linear differential equations  
and, with the availability of computers, led to development of a  
suite of mathematical and simulation tools based on  
thermodynamics (Odum 1960), compartmental analysis (Patten  
1971), and systems analysis (Watt 1966).  The transfer of energy  
and nutrients among the biotic and abiotic components of  
ecosystems is one of the classic areas of application of  
mathematical models in ecology.  Perhaps the most fruitful  
applications have been in nonlinear simulation models at levels  
from individuals (Botkin et al. 1972, Shugart and West 1977) to  
spatially explicit long−term ecosystem succession (Costanza et  
al. 1990).
        Trophic webs describe the flow of energy among biological  
components in an ecological community, and are of applied  
importance because they help predict, for example, how  
environmental toxins propagate through living species, and which  
predators may help regulate weed species or pests.  From the  
first monographs on food webs (Cohen 1978, Pimm 1982) have  
followed collections of hundreds of food webs (catalogued in  
machine readable form) from different habitats.  These  
catalogues have led to the discovery of several new quantitative  
regularities, previously unsuspected, in the structure of food  
webs. These regularities, in turn, have led to the development  
and analysis of new mathematical models based on random directed  
graphs, which have made new and testable predictions about food  
web structure.  A current general reference, the result of  
collaboration between an aquatic ecologist, a population  
biologist and a mathematician, is Cohen et al. (1990).  

4.2     Grand Challenges



In this section, we identify two grand challenges, among the  
many confronting mathematical ecology and evolutionary biology.   
The first, global change, includes relations to biodiversity and  
sustainable development of the biosphere (see for example  
Lubchenco et al. 1991), as well as global changes in the carbon  
cycle, climate and the distribution of greenhouse gases.  The  
second, molecular evolution, builds bridges between population  
biology and the problems of cellular and molecular biology, as  
discussed in an earlier section.

4.2.1   Global Change

        Global change, with its great implications for the future  
of our biosphere, presents one of the grandest challenges to  
computational biology.  The proliferation of information from  
remote sensing, as well as more traditional ground surveys,  
introduces the need for geographical information systems that  
provide a framework for classifying information, spatial  
statistics for analyzing patterns, and dynamic simulation models  
that allow the integration of information across multiple  
spatial, temporal, and organizational scales.  Multigrid  
techniques, parallel processing, and other advances will be  
essential tools in interfacing general circulation models with  
ecological models, and will require substantive partnerships  
among physical scientists, biological scientists, and  
computational scientists.   
        The deficiencies of our knowledge about the patterns and  
processes of individuals, population and communities are serious  
enough even for static climatic conditions.  But these  
shortcomings are magnified in any attempt to deal with long−term  
changes in global climate.  Historical measures of production  
contain information on the variations in the climate, but the  
global increase in "greenhouse" gases portends a trend of  
unknown magnitude in climatic change.  We are challenged to  
predict how such global changes will be reflected in the genetic  
structure of organisms, in biodiversity, in the behavior of  
individuals, in the recruitment and growth of populations, and  
in the behavior of communities, and to develop strategies for  
mitigation and sustainable development.  Understanding and  
dealing with the biological implications of global climate  
change, from every perspective, requires a significant new  
initiative.  One of the central challenges, as discussed many  
times in this report for other problems and again in more detail  
below, is the development of approaches for dealing with and  
relating phenomena across disparate scales of space, time, and  
organizational complexity.   

4.2.2   Molecular Evolution



        Many challenging and important problems remain to be solved  
in the application of population genetic theory to molecular  
evolution.  The existing methods of population genetics, such as  
the neutral theory, which were developed to describe variation  
at single loci, require restructuring to address questions that  
arise in the analysis of DNA sequence data.  For example, the  
implications of tight but incomplete linkage among nucleotide  
sites within loci present a serious challenge.  Molecular  
evolution is an area of rapid growth in the acquisition of  
sequence data as well as in theoretical development, and an area  
with enormously important economic and political implications,  
ranging from the environmental release of genetically engineered  
organisms to improvements in biotechnology.  
        Although several methods are available for reconstructing  
phylogenies from sequence data (Cavalli−Sforza and Edwards 1967,  
Nei 1987, Felsenstein 1981), robust methods for assessing the  
reliability of the inferred phylogenies are not available.   
Realistic models of the evolutionary process that can form the  
basis for statistical inference are needed.  Rapidly  
accumulating sequence data raise questions far ahead of current  
statistical methods.  Progress in this area will be important  
for understanding the evolutionary relationships of virtually  
all organisms that lack a detailed fossil record, including  
bacteria and plants, as well as recently diverged human  
populations.   
        Molecular variation within populations and divergence  
between species contain information about the relative  
importance of evolutionary forces including mutation,  
recombination, natural selection, migration, transposition and  
gene conversion (e.g., Hudson 1990, and Hughes and Nei 1988).   
Efficient methods of extracting this information and for testing  
alternative models are needed, particularly since large amounts  
of DNA sequence data are becoming available.  The task of  
characterizing the properties of sequence variation expected  
under neutral models is underway, but alternative models with  
various forms of natural selection interacting with genetic  
drift are only beginning to be developed and explored.   
Gillespie (1989) has begun the analysis of the evolutionary  
process in a highly structured molecular landscape.  Takahata  
and Nei (1990) have obtained some results for a model with many  
alleles maintained by overdominant selection and frequency  
dependent selection.  These studies indicate the possibility of  
progress, but  much more effort in these directions is needed.  
        A promising area for further research, and one in which  
important progress already has been made, is in understanding  
molecular variation in populations has been made by  
consideration of gene genealogies.  This research was  
spearheaded by the analysis of the coalescent process by Kingman  
(1982), and extended by Griffiths (1980), Tavare (1984),  



Watterson (1984), Kaplan et al. (1988), Tajima (1983), Takahata  
(1988), Slatkin (1989), and others.  The analysis of  
measure−valued diffusions (Fleming and Viot 1979) represents  
another powerful approach for the study of multidimensional  
population genetic processes.  

        4.2.3   The Problem of Scale

        An important factor motivating new developments in ecology  
is the expanding temporal and spatial scale of many critical  
environmental problems.  Within a decade we have moved from  
forest and lake studies on the scale of tens of hectares, to  
acid precipitation and air pollutants operating on entire  
regions, to carbon dioxide problems on a global scale.  The  
mathematical challenge will be to develop a theory of scale that  
can (1) guide the aggregation and extrapolation of fine−scale  
understanding to larger scales, and (2) suggest hypotheses and  
methods for the direct investigation of large−scale phenomena.  
        Fundamentally new approaches to studies in population  
biology will be made possible by an understanding of phenomena  
that occur at different spatial and temporal scales.  For  
example, genes express their effect at the individual level, but  
the effect of individual variation on population dynamics is  
poorly understood.  Some recent successes in this area include  
the expression of genes in individuals and the role of  
individual behavior and variation in population dynamics (Mangel  
and Clark 1988).  New approaches (i.e., theory, models and data)  
are needed to link sub−populations that are intermittently  
connected by stochastic events mediated by fluid flow (e.g.,  
water, wind) and even plate tectonics.  The key problems are to:   
(1) determine the "characteristic scales" for various ecological  
processes, (2) formulate the corresponding models that capture  
scale−dependent effects, and (3) test this theory at the  
appropriate spatial and temporal scales.   
        Different dynamical characteristics are displayed by  
epidemiological systems depending on the level of spatial  
aggregation of observations.  At the individual level,  
stochastic effects are very important.  In a small group, a  
disease may enter and quickly disappear.  However, in cities and  
counties as a whole, persistence is more likely and the patterns  
of incidence appear more regular.  For larger aggregations,  
deterministic models have proved to be useful.  An understanding  
of the appropriate ways to link small−scale and large−scale  
epidemic behavior is important for understanding the impact of  
disease.  Greater access to powerful computers will make it  
possible to study the relationships between different scales.  
        The development of new models and innovative mathematical  
and statistical methods for addressing the interaction of social  
dynamics and epidemiology, at distinct biological and  



sociological levels of aggregation, and at distinct temporal and  
spatial scales, is a rapidly expanding area of research.  Models  
and methods that follow the dynamics of pairs (or groups) of  
individuals in different "sociological spaces" are now being  
extensively studied.
        Population biology and ecosystem ecology long have been  
disjunct subdisciplines.  Challenges posed by environmental  
problems, including global change, are causing these two areas  
to pull together.  Paleobiology, process studies, and  
theoretical examinations show that biogeochemical cycling  
imposes important resource constraints on populations.  In  
return, patterns of resource use specific to populations, such  
as type of gaseous product, carbon element ratios and organic  
compounds, produce feedback to local and global element cycles.   
This linkage is central to our current understanding of plant  
populations dynamics, dynamics of species invasions and marine  
biogeochemistry.
        Linking population biology to biogeochemistry involves some  
major challenges to mathematical representation.  For example,  
species of phytoplankton that have highly contagious  
distributions affect  global air chemistry, possibly influencing  
global climate.  Soil carbon changes over time scales of  
hundreds to thousands of years, yet controls soil nutrients that  
control plant growth and competition over short intervals.  In  
addition, the interactions take place in a spatial context,  
which requires large input data sets for realistic simulation.   
Better theory, more powerful computations, and large−scale field  
studies are all required to achieve the coupling of these  
subdisciplines.  The requirement to predict the effects of human  
use of ecosystems and global climate change makes this coupling  
essential.  
        Global problems ultimately must be studied at global  
scales.  This is especially true when linking spatial and  
temporal scales in the study of oceanic processes and global  
climate change.  For example, zooplankton respond to the spatial  
and temporal distribution of their food resources  
(phytoplankton) and their predators (planktivores), while the  
planktivores respond to the temporal and spatial distribution of  
the zooplankton and their predators (piscivores).  In order to  
predict the patterns of these organisms, one must deal with  
spatial scales that range from millimeters or less  
(phytoplankton), centimeters (zooplankton size), meters  
(zooplankton aggregation size), tens of meters (planktivore  
school size), to kilometers (planktivore school group size,  
piscivore group size and movement scale).  Each of these spatial  
scales has its own temporal scale (Okubo 1980).     
        The concept of self−similarity, derived from fractal  
geometry (Mandelbrot 1977), implies that extrapolation of  
information across scales is possible as long as the underlying  
process remains unchanged.  However, ecological processes (e.g.,  



energy flow, nitrogen exchange, etc.) are not always  
self−similar at all scales, because processes often change  
abruptly between locations.  Relatively uniform areas might be  
measured with a few samples and extrapolated to large regions  
with little error, while heterogeneous regions with complex  
gradients of soils, light and moisture might produce major  
differences within a single watershed (i.e., not self−similar)  
and thus be difficult to extrapolate.  The principal questions  
are:  (1) How does one identify self−similar processes?  (2) How  
can situations that are not self−similar be anticipated?  (3)  
Can extrapolation methods be developed for these situations?
        Many ecological processes occur in spatially patterned  
environments.  Plant succession, biodiversity, foraging  
patterns, predator−prey interactions, dispersal, nutrient  
dynamics, and the spread of disturbance all have important  
spatial components.  Many theoretical studies (e.g., Levin and  
Paine 1974, Steele 1974, Clark et al. 1978) have demonstrated  
the significance of spatial considerations in processes such as  
energy flow, nutrient cycling, and population growth rates.   
However, the difficulty of analyzing these processes often has  
caused the spatial dynamics to be ignored.  
        Models based on percolation theory (Stauffer 1985) recently  
have been used to relate the spatial distribution of resources  
to the propagation of disturbance (Turner et al. 1989) and the  
dynamics of species dispersal and habitat utilization (Gardner  
et al., in press; O’Neill et al. 1988).  Other ideas from the  
theory of interacting particle systems are being applied to  
ecosystem problems.  For instance, models that simulate the  
change in critical thresholds of disturbance propagation as a  
result of climatic change (i.e., drier forests), previous  
disturbance history, and the effects of human intervention will  
be useful for unravelling the issues associated with global  
change.  Studies of the percolation "backbone" (a connected  
series of sites that transports material, energy, or organisms  
through a spatial system) may provide an objective view of  
critical habitats for the design and management of conservation  
areas.   
        Spatially explicit models can be very useful in addressing  
the problem of linking scales.  The spatial resolution (grain) can  
be manipulated and changed in modeling studies.  Evaluation of  
model predictions against spatial data available in geographical  
information systems allows the uncertainties of model predictions  
to be evaluated and key processes and parameters to be identified.   
It is expected that measurement of these parameters will  
significantly improve the accuracy and reliability of spatial  
predictions.  
.



  

Chapter 5

Modes and Levels of Support

The potential for interactions between mathematics and biology can  
be developed only by careful nurturing.  Some of the isolated  
interactions between the two disciplines have been discussed in a  
limited fashion in the earlier overview.  The interactions are  
occurring because the questions exist and efforts are being made by  
interdisciplinary collaborations or individuals.  But this  
interaction can be strengthened through attention to the modes and  
levels of support that will encourage such interactions.  Specific  
recommendations follow.   

5.1     Research Support

It is recommended that funds for the support of interdisciplinary  
research between biological and computational scientists and  
mathematicians be dramatically increased.  Projects could take  
several forms including the following.

        1.      Projects involving interdisciplinary research by a single  
                investigator.
        2.      Interdisciplinary groups of mathematicians, biologists and  
                computational scientists of sizes ranging from two individual  
                investigators to networks of individuals from the different  
                disciplines at different universities.

        Related to these projects is the further recommendation that  
specific guidelines for the review process of such proposals be  
considered.  Databases of reviewer names who have biological,  
mathematical and computational expertise, or any combination of  
those skills, should be developed and made available to  
administrators at all involved federal agencies.   

5.2     Infrastructure

It is extremely important that adequate computer facilities and  
support of such facilities be provided.  It is recommended that:



        1.      Funding for computer facilities and support of those  
                facilities be considered to be intrinsic to all awards made.
        2.      Funding for clearinghouses for software development,  
                maintenance and distribution be made available.
        3.      Support be provided for networks for database access and  
                network collaborations.

5.3     Training

Training in this interdisciplinary field must be regarded as a  
lifelong exercise.  It must start early and continue for the  
professional lifetime of the scientist.  Thus, recommendations for  
such continuing education are made for several levels of training.

        5.3.1   Precollege and Undergraduate Education

        Children, both in primary and secondary school, have a natural  
interest in biology.  In the past, this has been limited largely to  
field biology or experiments that are chosen for minimal cost rather  
than the long range view of building a base for exciting the child  
into consideration of quantitative biology as a career.  While this  
remains perhaps the most natural avenue for arousing the curiosity  
of a child about the nature of biology, quantification must be  
introduced at an earlier stage.  This is a natural area to show  
students projects and group efforts consistent with new mathematics  
curricula (see Mathematical Sciences Education Board, National  
Research Council 1990; National Council of Teachers of Mathematics,  
Commission on Standards for School Mathematics 1989).  Few of these  
applications appear in textbooks, and most are absent entirely from  
the preparation of teachers.  Our recommendations are to:

        1.      Develop curriculum materials in mathematical biology for  
grades K through 12 and commit special teacher enhancement funds to  
introduce these materials to the nation’s cadre of teachers.
        2.      Establish a program of summer internships for high school  
students and/or undergraduate students in which the students would  
spend two months working with mathematicians or biologists.
        3.      Support faculty at undergraduate institutions for training  
and research experiences that will further their knowledge and  
interest in the cross−discipline.
        4.      Support summer workshops developed for high school or  
undergraduate level faculty or/and students that focus on biological  
subdisciplines in which mathematics and computation play a large  
role.  Instructors should be recruited from both disciplines.  A  
paradigm might be the Computational Neurobiology Course at Woods  
Hole, MA.
        5.      Support workshops and conferences to develop methods for  
introducing significant quantitative tools to be introduced  



naturally into precollege and undergraduate biology curricula.
        6.      Support graduate students in applied mathematics and/or  
biology with an interest in the other discipline to work with high  
school and/or undergraduate students as teaching assistants or in  
other more imaginative ways to develop the younger students’  
interest.

        5.3.2   Graduate and Postdoctoral Training

        The recommendations is this category are designed to improve  
the quantitative knowledge of biologists, to improve the biological  
knowledge of mathematicians, to facilitate ongoing collaborations,  
and to encourage new collaborations.   

        1.      Specifically target a substantial number of graduate  
fellowships in the biological sciences to individuals with  
undergraduate degrees in the mathematical or computer sciences or  
vice versa.
        2.      Support special cross−disciplinary postdoctoral  
fellowships that will allow Ph.D.’s in one field to work in the  
other field.
        3.      Hold mini−courses, lasting four to eight weeks, in areas  
where both biological insight and mathematical or computational  
expertise are needed.  Levels would be appropriate for graduate or  
post−doctoral students in one of the disciplines with more basic  
information in the cross−discipline.   

        5.3.3   Senior Established Investigators

        It is recognized that established scientists with expertise in  
biology, mathematics and computational sciences are rare.  It thus  
becomes important, at least initially, to encourage and facilitate  
efforts by scientists in one discipline to cross over into the other  
discipline to answer significant questions.  Are recommendations are  
to:

        1.      Establish special mid−career fellowships for mathematical  
or computer scientists to join biological teams or individuals to  
enhance their biological insight and for biologists to work with  
mathematicians for varying lengths of time.
        2.      Support special visiting arrangements, both short− and  
long−term, be supported for scientists from one discipline to work  
with scientists from the other disciplines to encourage greater  
insight into the use of mathematics in biology.   

5.4     Human Resources  



Several federal funding agencies already have a number of programs  
that encourage and seek out under−represented groups (women,  
minorities and persons with disabilities) in the sciences.  This  
effort should continue that emphasis.  All of the disciplines  
considered in this initiative have under−representation of  
minorities and people with disabilities.  A significant number of  
biologists are women, but the number of female mathematicians  
decreases as the level of the degree increases.  It is hoped, that  
as mathematical biology develops as a field, this statistic will  
change.   

.
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         Research Opportunities in Computational Biology

Executive Summary  

Computational Biology is emerging as a current analog to the  
development of molecular biology as a discipline in its own right.   
In the late 1950s and early 1960s a group of scientists began to  
apply the tools of several disciplines; genetics, microbiology,  
physics, biochemistry, and biophysics, to analyze biological  
problems in a new way.  The power of this approach was so great that  
it emerged as a discipline itself and is now known as molecular  
biology.  As described in this document, the application of  
mathematical and computational tools to all areas of biology is  
producing equally exciting results, is providing insights into  
biological problems too complex for traditional analysis, and is  
emerging as a new discipline within the biological sciences.
        There is a consensus among all observers that biology,  
regardless of the sub−speciality, is overwhelmed with a large amount  
of very complex data.  However, what sets biology apart from other  
data rich fields is the complexity rather than the sheer volume of  
the data produced.  In contrast to other data rich fields, biology  
remains a scientific "cottage industry," with the data generation  
done in a highly distributed mode, with no standard format or  
syntax.
        Thus, all areas of the biological sciences have urgent needs  
for the organized and accessible storage of biological data.   
Generally this is referred to as biological database development,  
however, this terminology infers traditional database technology  
such as transaction oriented relational database systems.   
Unfortunately, relational database technology is inadequate to serve  
many areas of the biological sciences due to the complexity of  
biological data and the absence of a standardized data structure.   
It is clear that collaboration between computer scientists and  
biologists will be necessary to design information platforms which  
accommodate the needs for variation in the representation of  
biological data, the distributed nature of the data acquisition  
system, the variable demands placed on different data sets, and the  
absence of adequate algorithms for data comparison, which forms the  
basis of biological science.
        There have been dramatic advances in commercially available  
hardware over the past few years and it has had an effect at both  
the high and low ends of the spectrum.  In the past this general  
purpose hardware was inadequate to address the most computationally  
intense problems in the biological sciences.  These computational  
problems were best be handled by special purpose equipment designed  
by teams of biologists and chip and circuit designers.  This  



condition has been dramatically altered in the past two years as  
high performance general purpose instruments have become more widely  
available.  Not only hardware limitations have affected the  
productivity of the computational biologist.  There is a continuing  
need for new algorithm development to cover many tasks, especially  
comparisons between objects and images.  Imaging technology is  
central to almost all of biology and data representation through  
image construction remains an elusive but astoundingly powerful  
tool.  The full utilization of modern CAD tools in computational  
biology will advance image analysis, but will require intense  
software and hardware development because of the complexity of  
biological data
        During the last decade there were dramatic advances in  
instrumentation and related methodologies for both light and  
electron microscopy.  The advances lie not simply in higher  
resolution, but rather in a broader size range of structures that  
can be analyzed, and more powerful methods for putting together the  
pieces of three−dimensional puzzles of cell form, and the addition  
of dynamic details of biological form and function, ranging from the  
subcellular to the physiological level.  The new approaches are  
computationally demanding.  Extant computational resources, which  
were typically set up for entirely different processing needs, not  
surprisingly, are proving inadequate for dealing with the massive  
data flow.  An effort to develop new computational approaches is  
underway in a few laboratories around the world.  However, it is  
important that new software be developed within the context of the  
experimental research driving the needs; that is, there must be  
close collaboration between those developing the software and the  
groups carrying out research on static and dynamic structures.   
Furthermore, augmentation of the experimental environment,  
particularly image processing equipment and other specialized  
equipment, is needed.  Positions for sophisticated programmers are  
even more important.  A prime example of the need for such a  
laboratory−based specialized programming effort is the development  
of workstations for interactive visualization and interpretation of  
3−D data.  The development will proceed in pace with experimental  
research only if it is done in an environment "open" in the terms  
used by the computer science world, where new applications are  
developed free from proprietary restraints and distributed as source  
code to other laboratories facing the same experimental needs.   
Commercial interests or specialized production groups will be  
required finally, to add value to the base line development,  
producing highly reliable ("bullet proof") production line products.
        X−ray crystallography and NMR are the major experimental  
methods for deducing macromolecular structures at atomic resolution.   
NMR and X−ray crystallography both produce extremely large amounts  
of data and are entirely dependent upon the availability of powerful  
computers and sophisticated processing algorithms for the  
interpretation of raw data.  In addition, there are fundamental  
scientific problems in both areas that require major computational  



advances.  In addition, substantial opportunities exist for  
combining structural information from several experimental  
techniques.  This may provide the basis for a structural solution  
where only partial data are available from any single technique.With  
improved computational tools, combining physical data from a variety  
of sources may become common place.  These developments will allow  
solutions to be obtained for structural problems which would  
otherwise be intractable.  Analysis of errors in structures based  
upon experimental data from several sources also represents a new  
computational challenge.
        Advances in X−ray and NMR data analysis will lead directly to  
rapid developments in the field of protein folding which will be  
synergistic with developments in other areas of biology itself, and  
especially computational biology.  Common problems of data  
representation, search strategy, pattern recognition and data  
visualization appear in many fields.  There is a particularly  
exciting synergistic relationship between the protein folding field  
and those of structure determination by X−ray crystallography and  
2−D NMR.  Each field will benefit from rapid advances in the other  
disciplines.  Improved folding algorithms provide a new way to  
attack the phase problem in crystallography, and new, more carefully  
refined protein structures provide rich new insights into protein  
folding.
        Various initiatives in computational neurobiology give us the  
hope of interpreting the mass of anatomical and physiological  
information about the nervous system that is now available in  
functional terms.  Better interpretation of these data will permit  
neurobiology to make contact with other fields such as psychology  
and artificial intelligence.  This work  will make specific, testable  
predictions in the areas of sensory perception (visual, olfactory,  
and auditory), memory, learning, and motor control.  Above all, it  
will lead to the integration of all these aspects to provide an  
eventual understanding of the total functioning of the nervous  
system.  Such integration can be expected to provide new insights  
that will lead to improvements in the treatment of diseases of the  
nervous system at all levels, from neuropharmacology to  
psychotherapy.  In addition, studies of this kind may be expected to  
contribute to major advances in artificial intelligence and practical  
robotics.
        In the area of genome analysis significant progress has been  
made over the past few years, including the use of molecular tools  
such as Restriction Fragment Length Polymorphism (RFLP) analysis.   
However, considerable effort is still required to make genetic  
linkage maps effective tools for genetic research.  To be useful in  
common situations, more markers must be identified and mapped to  
produce higher−resolution maps.  In many cases marker analysis  
requires the ability to analyze small families and consider  
quantitative traits.  To be fully useful in a meaningful  
quantitative sense this analysis will require powerful computer  
simulation and modeling.  Common to all of the problem areas  



examined is the need for good visualization of data.  Visualization  
is necessary because the sequence analysis phase for a molecular  
biologist is equivalent to exploratory analysis for a statistician.   
It is at this point that the experimentalist gains the feeling for,  
and understanding of, a sequence which may then guide many months of  
experimental work.  The complexity inherent in biological systems is  
so great that very sophisticated methods of analysis are required.   
These are the tools which must be readily accessible to molecular  
and cellular biologists untrained in computer technology.
        Ecology and evolutionary biology encompass a broad range of  
levels of biological organization, from the organism through the  
population to communities and whole ecosystems.  This complexity  
demands computational solutions.  The need for enhanced  
computational ability is most evident when one attempts to couple  
large numbers of individual units into highly interactive and  
largely parallel networks, whether at the tissue, community or  
ecosystem level of organization.  The proliferation of information  
from remote sensing introduces the need for geographical information  
systems that provide a framework for classifying information,  
spatial statistics for analyzing patterns, and dynamic simulation  
models that allow the integration of information across multiple  
spatial, temporal, and organizational scales.  Today, in these fields  
application software is mostly nonexistent except in a few special  
special cases such as image processing and remote sensing.  As more  
researchers begin to use computational techniques, we can expect to  
see a wider sharing of applications developed by an individual or  
small group.  This will require additional resources to take  
research codes and make them "bullet−proof" enough for community use  
and to add adequate documentation.  In order to take advantage of  
all these new capabilities, we need to increase training modalities.   
This can take a wide variety of forms, from on−line self training  
techniques to special sessions at universities, national centers, or  
workshops.
        It is recommended that Federal granting agencies place greater  
emphasis on the area of Computational Biology through a number of  
mechanisms.  This support must be developed over a period of several  
years with a particular emphasis on infrastructure and training.   
Many of the necessary changes may be instituted immediately while  
others will require a longer time in order to generate budgetary  
resources to build in new areas.  The current focus on biological  
databases is a good beginning, however, the need is so great that  
the initiative needs considerable additional resources.  These  
resources should be directed in three areas.  First, the enhancement  
of current databases which are in wide use but need concerted effort  
at standardization of data structures and broadened access.  Second,  
a continued examination of new databases which will incorporate  
important information needed by many investigators, but also explore  
new database ideas and representations.  Third, research on the  
representation of objects and images which will be searchable and  
comparable within database structures.  For example, there is a  



great need to be able to search a database of enzyme or antibody  
active site configurations to test for binding of newly developed  
ligands.  Database development remains the highest priority item  
since this area is common to all fields of biology.  A second area  
of high priority is the development of more powerful visualization  
tools for data interpretation.  This area too is a need shared by  
almost all fields of biology.  Funding agencies could immediately  
respond to some of the needs of the research community by  
recognizing the need for professional programmers and hardware and  
software facilities on grants in this area.  Agencies must break out  
of the habit of immediately removing these items from budget  
requests in order to reduce the overall cost of an award, since  
these items are critical not only to doing the proposed work but  
also to making the results of the work (in the form of usable source  
code) available to the rest of the research community.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                              Appendix 4

           Training Computational and Mathematical Biologists  

Summary

1.      Introduction

It has been estimated that in mid−1990, there were approximately  
4000 professional level scientists identifiable as computational or  
mathematical biologists.  These scientists were found in a wide  
variety of institutions and in a wide range of positions within  
those institutions.
        The pattern of distribution of these individuals among and  
within different institutions appears to be related to their  
academic training.  For example, mathematicians and computer  
scientists who have primarily followed an interest in the biological  
sciences generally work as biologists and find themselves in  
nonacademic research positions in industry, government or private  
research institutes, or quasi−academic research centers (e.g.,  
supercomputer centers).  A small minority are in biology  
departments.  In contrast, mathematicians who have continued to  
pursue research activities in mathematics, choosing biologically  
related problems or examples, or collaborating with biologists, tend  
to remain in departments of mathematics or applied mathematics in  



academic institutions.  Computer scientists follow a similar  
pattern.  Statisticians may be found in statistics departments,  
biostatistics groups or departments, or even in biological sciences  
departments, depending on the extent of their involvement with  
biological problems, and the local structure of the institutions  
within which they work.
        Biologists who rely on computational and mathematical tools in  
their research activities are found in many institutions.  A large  
number have moved into industry where they play a role in the  
analysis of macro−molecules in biotechnology and pharmaceutical  
companies.  Another major source of employment is in government and  
private research institutes, which tend to focus on problem−oriented  
research and directly utilize their computational biology skills.   
In the academic environment, computational biologists pursuing  
accepted biological problems are found in a variety of departments  
of biology (including departments of related name such as genetics,  
ecology and evolutionary biology, molecular biology, and  
microbiology), chemistry, and biochemistry.
        The character of the institutional acceptance of these  
interdisciplinary activities depends on two factors: the need of the  
institution for problem−oriented work, and the traditional academic  
expectations on the performance of the individual.  For example,  
biology departments place their emphasis on disciplinary  
achievements, and computational and mathematical approaches are  
secondary to the disciplinary results.  Therefore, the infusion of  
mathematical and computational tools is dependent on the confidence  
of the researcher that they can afford to invest the time and effort  
to enable them to use this approach, let alone develop new tools.   
Thus in many cases, computational and mathematical biology makes a  
backdoor entrance into the academic world.  In contrast, these  
approaches are embraced more directly by industry and research  
institutes whose problem−oriented programs utilize a broader range  
of approaches, including direct application of mathematical and  
computational techniques.
        The workshop participants’ assessment is that in the immediate  
future, this situation will not undergo a substantial change.   
Therefore, scientists expecting to enter the academic research world  
will continue to need a strong disciplinary grounding for their  
cross disciplinary work.  Employment opportunities in industry and  
research institutes appear to be stable, or growing slowly.  Such  
centers will continue to be major sites for the development of  
computational techniques and applications in biology.
        Because of their frequently strong mathematical and  
computational environments, and the less frequent presence of rigid  
departmental structures, one possible source of future growth for  
computational biology is the four−year college.  Mathematical and  
computational approaches fit well within the research environments  
found in these institutions, and they are likely to find effective  
implementation in the teaching programs.  In this context, faculty  
in these institutions may be expected to employ mathematical and  



computational techniques in both research and the development of  
teaching aids that will eventually find their way into research  
institutions.  However, here again, strong disciplinary training  
will be essential as the basis for the research approach.

2.      Profiles of Computational and Mathematical Biologists

In the past, most of the migration of scientists into computational  
biology has been from disciplines outside of biology (e.g., math,  
physics, chemistry, computer science, etc.).  Physicists become  
biologists, but not the reverse.  This migration and its asymmetry  
has been prompted by successful applications of domain−specific  
technology to solving biological problems.
        Many early successes in computational biology were obtained by  
scientists who were primarily biologists with marginal skills in  
computer science and mathematics (programming skills and some  
algorithmics), while many others were the result of work by  
scientists with extensive mathematical and computational  
backgrounds.  However, as the problems under investigation become  
more complex, training which provides great depth in quantitative  
analysis will be essential.
        Current interest and excitement in computational and  
mathematical biology is driven in large part by neurobiology, global  
change, and genomics.  In all of these areas, vast amounts of  
information are accumulating at a rate that precludes human  
absorption and, hence, understanding.  Biology needs tools for  
manipulating and analyzing information.  In order for training  
environments to be maximally effective there must be a clear  
understanding of which professional profiles are suitable for current  
and future researchers in computational and mathematical biology.
        The profiles which follow are dependent upon the nature of the  
position.  Academicians tend to reside within traditional  
departmental units; whereas, in industrial settings and research  
institutes there is a wider range in the mixtures of disciplines in  
working groups.  The following lists of specialities within computer  
science, mathematics and biology are those in which there is  
substantial research activity today and where there is likely to  
remain some research focus in the future.

        Computer Scientists:

        Most computer scientists retain their primary professional  
identification with computer science.  They tend to view biological  
applications as a source of computer science problems.  Biological  
applications are new to computer scientists, and the traditions  
across the interface are developing at a moderate pace.  The  
tendency is to cross the line as a senior scientist by developing  
collaborations.  There are some successful scientists in this field  



whose first exposure to biology was at the graduate level.  Examples  
of the areas of computer science in which such collaborations take  
place are:  

                        Artificial Neural Networks (AI)  
                        Algorithmics  
                        Database design and theory  
                        Visualization (Graphics)

        Biologists:

        Biologists working on computational problems come from a  
plethora of backgrounds: computer science, mathematics, statistics,  
engineering, physics and chemistry as well as biological  
disciplines.  The biological sciences are themselves diverse and  
different areas of biology draw upon very different quantitative  
skills.  Those biologists who have crossed the boundaries between  
biology and other disciplines have often done so to address specific  
biological problems.  Their acceptance by the biological community  
has been out of necessity since many biological problems require  
technology that has been driven by insight and intuition from other  
disciplines.  This report is motivated by the assumption that this  
trend will accelerate in the near future in areas such genomics,  
neurobiology, imaging, structural biology and issues of global  
climate change.  Many of these developments have been initiated by  
scientists whose initial training was outside biology (e.g.,  
mathematics, chemistry and physics).  The current technological  
advances will require a new range of quantitative skills beyond the  
norm of current curricula in the biological sciences.  Biological  
Sciences that currently draw substantially from the computational  
and mathematical sciences include:

                Population Biology, including Ecology and Genetics  
                Molecular Biology  
                Molecular Genetics  
                Cellular Biology  
                Neurobiology  
                Biophysics and Structural Biology  
                Ecosystem Ecology  
                Epidemiology  
                Physiology

        Mathematicians:

        There is a long tradition of mathematicians and statisticians  
working on biological problems.  Indeed, the field of statistics grew  
largely out of biological origins, and there is a substantial  
portion of the statistics community working on problems of biometry  



and biostatistics.  There is also a small but stable community of  
mathematical biologists working within departments of pure and  
applied mathematics.  Some members of this community migrate to  
biological departments during the course of their careers while  
others remain in mathematical science departments.  Those who do  
remain within mathematical science departments either establish a  
career based upon collaborations with biologists, or focus upon  
mathematical questions driven by biological problems.  In some  
cases, threads of mathematical research initiated by biological  
problems take on a life of their own as interesting areas of  
mathematics per se.  Areas of mathematics making substantial  
contributions to biology include:

                Applied Mathematics (Differential Equation Models, Image  
                        Processing and Analysis)  
                Probability (Sequence Analysis, Interacting Particle  
                        Systems)  
                Statistics
                Discrete Mathematics
                Topology and Differential Geometry

2.1.    Summary of the Current Status

        With regard to the current panorama of activity, we perceive  
that several difficulties exist.  First, computer scientists are not  
sufficiently involved in computational biology.  Their work is  
frequently on problems so abstracted from the application as to make  
them less than fully effective as collaborators.  Another limitation  
is that biologists tend to view the work of computational scientists  
as service, and not original research, which tends to alienate this  
community.  Mathematicians are caught between mathematical peers who  
evaluate their work on the basis of its mathematical depth and  
elegance, and biologists who have little appreciation for theory  
that does not have a direct bearing on the interpretation of  
experimental data.  Finally, those biologists who have invested in  
cross−training are frequently misunderstood and undervalued by their  
colleagues, most of whom do not understand how to evaluate their  
work.
        Computer science is a new discipline that is rapidly maturing.   
As the field develops, a tradition of interdisciplinary work will  
evolve much as it has for mathematics, especially statistics.  This  
will, in part, alleviate the problem of computer scientists’  
involvement.  A greater emphasis on the early grounding in scientific  
disciplines while at the undergraduate level should also help to  
cultivate computer scientists with a stronger interdisciplinary  
focus.  As the needs for computation in the various areas described  
above becomes clearer, the biological community must become  
increasingly more tolerant and accepting of computational biologists  



within their midst.  As a result of this and other factors, such as  
heavy dependence on physical measurement, the training of biologists  
at all levels must become increasingly more quantitative in nature.

3.      Encouraging Interactions

The most effective way to encourage interactions between  
mathematicians and computer scientists on the one hand, and  
biologists on the other, is through direct co−involvement with a  
particular problem.  This applies at all levels from undergraduate  
through senior scientist.  The ways in which this interaction may be  
encouraged depend on the level and direction of movement (math/CS to  
biol or biol to math/cs).  At present, the pattern is generally  
unidirectional, with movement from mathematics or computer science  
into biology as the dominant paradigm.  Significant changes in this  
state of affairs are likely to require substantial curricular  
changes based upon effective means of overcoming the apprehension of  
most biology students towards mathematics.
        Interaction can be improved through a strengthening of  
mechanisms that already exist.  However, one area deserves much  
greater emphasis than is now the case, and that is support of small  
research groups with a genuine interdisciplinary focus: within this,  
substantial support is needed for post−doctoral scientists.  Support  
of small group research will develop critical mass in important  
areas, will help to foster and sustain collaborative research, and  
provide a crucial home for individuals who are in the early stages  
of (what is now) a cross−disciplinary research career.
        The most effective mechanisms for stimulating these fields vary  
by the level of a scientist’s career stage as outlined below.

        (a) Senior researchers (tenured and above)

        (CS, Math −> Biol) Support for sabbaticals and, later, research  
                           in biology.
        (Biol −> Math/CS) Support for visits to math research groups to  
                          learn/update new technical areas.

        (b) Pre−tenure

        Most mathematics and statistics PhD students will start in  
untenured positions.  Changing fields (or, at least becoming more  
interdisciplinary) at such an early stage is a very risky career  
move, particularly by individuals approaching a tenure decision.   
One way to ameliorate this situation is through a new focus on  
PYI−level type support (National Science Foundation Presidential  
Young Investigator) for promising people (prestigious competitive  
awards).



        (c) Postdoctoral

        Support for postdoctoral training within existing grants is  
essential.  Postdocs are an important educational component of  
existing research groups, and are very scientifically profitable in  
the short term.  These should support a given individual for  
multiple years, and not be specifically tied to a particular  
investigator within the group.  This mechanism allows quick response  
to changing areas of interest, while providing enough time for a  
postdoctoral fellow to develop a useful independent research focus.
        Another aid to young investigators is the computational  
research associates program at the NSF sponsored Supercomputing  
Centers.  This program is of great value to the biological sciences  
and the field would benefit from its continued existence.  However, to  
be maximally effective these investigators must be part of an active  
and focused research program and not "generalists" in applied  
computer science.
        The concepts behind these training programs are not based on  
the assumption that all people passing through them will eventually  
obtain tenure track positions in universities.

        (d) Graduate students

        An important source of mathematical biologists comes from  
mathematically trained undergraduates who change fields early in  
their postgraduate education.  Such students are then main−stream  
biologists, with the requisite quantitative background to enter the  
fields of mathematical or computational biology.  The educational  
challenge for students with this background is the continuation of  
the quantitative approach to biology in a supportive environment.   
This requires an appropriate mentor and an appropriate departmental  
or graduate group environment so that the student’s background is  
valued and prior training reinforced.  Given the many opportunities  
available to an undergraduate with computer science or mathematical  
training, it is essential that graduate student support be provided  
to entice these students to forego the immediate gratification of  
lucrative employment for the longer term prospects of graduate  
training and research careers in biology.  To this end the continued  
and renewed support of training grants or traineeships (for example  
in the research groups described above) are of central and  
continuing importance.
        Furthermore, educational institutions must be encouraged to  
recognize the need for training students in these areas as a means  
of dealing with the future of biological research.  To this end  
institutional and departmental support of fellowships and RA  
(Research Assistant) positions are of supreme significance.   
Cross−training students at the graduate level will lengthen an  



educational process that already can be inordinately long.  Freeing  
a student from the demands of a teaching assistantship or a research  
assistantship with responsibilities to further the work of a  
principal investigator will help make such programs educationally  
feasible.  It would be especially appealing to find a mechanism to  
support mathematical or computational biologists within the  
structure of departments of mathematics or computer science.
        One of the most significant factors in the training of graduate  
students is the role model of the major professor.  This mentorship  
plays a greater role in the ultimate aspirations of a student than  
is generally acknowledged.  The successes, failures, and  
frustrations of a student’s mentor plays a profound role in the  
expectations and aspirations of a student.  In this context the  
small group research environment is a highly significant environment  
in which to train students for the future of the biological  
sciences.

        (e) Undergraduate

        In most institutions it is very common for the top biology  
students, especially those interested in eventual graduate study, to  
participate in undergraduate research projects, especially in their  
Junior and Senior years.  this opportunity should not be confined to  
biology students, but should be expanded wherever possible to  
include interested students from mathematics and computer sciences  
whenever possible.  The proper environment is essential to the  
nurturing of a student that might wish to commit to a career in the  
biological sciences, using this valuable undergraduate training.  To  
this end the National Science Foundation REU (Research Experiences  
for Undergraduates) program provides an extraordinary opportunity in  
the Math/Biol area.
        One area of extreme importance for the future development of a  
cadre of computational and mathematical biologists, and for the  
continued recruitment of students into biophysics and related  
disciplines is the development of better course materials devoted to  
the quantitative approach to biology.  The workshop participants  
valued very highly the concept of "enculturation of quantitative  
thought" through the introduction of quantitative approaches in  
biology courses

        (f) Pre−college

        While there was considerable discussion during the workshop  
regarding the state of pre−college science education, no specific  
recommendations were developed.  Many private and government  
agencies have focused great attention on this problem, and it  
remains a top national priority.  There was general agreement that  
two issues posed particular concern to the participants.  First, the  



need to involve more fully parents in the educational process.  This  
is particularly important in groups which do not have a cultural  
history of educational achievement.  The second concern was the  
current selection of the "ultimate underachiever" as the folk hero  
of the nation’s children.  We believe that this message is  
alarmingly inappropriate in the current context of rapid  
technological change and global competition.  The participants hope  
that the leadership of the Education and Human Resources Directorate  
of the National Sciences Foundation will use its influence and  
insight to find a mechanism to reverse this trend.

        (g) Summary Principles

        (1) If time is limited for education, spend it in mathematics,  
            not computer science.
        (2) What we want is an attitude/consciousness change, so that  
            people are aware of the input of the "other" type of science in  
            their own area.
        (3) While collaboration will enhance the science of the current  
            generation, we are seeking to change the way that biology is done by  
            changing the way biologists are educated for the next forty years.

4.      Fundamental Educational Principles

        (a) Undergraduate Education

                (i) General Course Content

                The cross−disciplinary aspects of modern science must be  
emphasized in all undergraduate science and mathematics courses.   
The role of computer science and mathematics, as well as  
technologies from physics and chemistry, need to be presented in  
biology courses.  In contrast, the research areas that have used  
various tools of computer science and mathematics in the  
experimental sciences should be identified throughout mathematics and  
cs courses.

                (ii) Mathematics/Computer Science Majors

                All mathematics and computer science majors should have  
required experimental science courses.  We recommend a minimum of  
two years that can be concentrated in one area or spread over the  
basic sciences.  The purpose of this is to provide the student with  
an understanding of the vocabulary and concepts and an experience of  
the ways in which mathematics or computer science have contributed  
to other disciplines.



                (iii) Biological Sciences

                In order to produce biological scientists who will be  
qualified to do modern research, we strongly recommend that the  
science curricula require four years of mathematics and/or computer  
science.  Representative courses might include programming, theory  
of algorithms, probability and statistics, linear algebra, calculus,  
discrete mathematics, and numerical analysis.

        (b) Consequences

        Failure to implement these recommendations at a minimal level  
will foreclose the future for many undergraduates majoring in  
biological sciences.  This originates in the types of problems that  
are coming into existence and that are consistently more and more  
dependent on quantitative skills for their solution.  Secondarily,  
lack of training in these quantitative areas will limit the  
questions that can be asked by an investigator, and may come to  
threaten an individual’s levels of funding.  We must remember that  
we are addressing the education of persons who will be in the pool  
for the next forty years.  If education changes are not implemented,  
much of biology will fail to thrive.
        The broad education that we are proposing also permits people  
to change their minds and acquire additional course work in another  
field, even late in their studies, without having to start from the  
beginning.
        Our recommendations should not be construed to support any  
concept that presupposes a gender−specific bias in the ability to  
perform.  It may be that a type of math/cs anxiety will become  
apparent if our recommendations are instigated.  In order to counter  
this, we propose that support groups, personal tutorials, study  
circles and other tools of encouragement and enhanced  
performance/esteem be supported so that they are readily available.

5.      Additional Recommendations

Part of the difficulty in implementing the course recommendations may  
be the prevalence of pre−med education as a major component of  
biology curricula.  Although there will be a number of additional  
consequences, it would be well worth considering the restructuring  
of the undergraduate major so that pre−meds follow a separate track  
and their presence does not determine the future of an academic  
discipline.
        It is incumbent upon those who practice cross−disciplinary  
science and mathematics/CS to become both role models and mentors  
for others.  It is particularly important for representatives of  



under−represented groups to make an effort to encourage others.
        Several members of the group have suggested that a new type of  
biology course should be developed.  It would cover the elements of  
modern biology, but highlighting the contributions of other  
disciplines.  The hope is that someone will be inspired to write a  
founding text, one that will change the field.

        Graduate Education

        Continue to create opportunities for cross−disciplinary work.   
NIH programs in molecular biophysics and the NSF research training  
groups are examples of attempts to encourage this type of  
interaction.
        One−on−one mentor/student relationships are not sufficient to  
maintain cross−disciplinary development.  Direct support for  
cross−disciplinary efforts would help to break down the  
interdepartmental barriers that frequently exist.  Seminar groups or  
other frequent interactions should be encouraged.
        New graduate students (and postdocs) might acquire an  
elementary grounding in a new field through summer institutes or some  
other "crash course."  The courses would be taught by highly  
interactive, expert, senior level researchers.  For example, a  
course in basic molecular biological concepts could include  
molecular biology, biochemistry, and molecular biophysics.  Emphasis  
would be on the vocabulary and point of view, that is, how the  
science is done and what are its assumptions.  For a course on  
computation in genetics, this material might include basic computer  
science concepts, e.g., files, databases, algorithms and their use,  
graphics and statistics.  The benefits of such a course could also be  
made available to more senior investigators.

6.      Women And Other Under−Represented Groups

In high school, women represent a reasonable proportion,  
approximately 30−40%, of those students who are interested in the  
physical sciences and mathematics.  Partitioning begins in college  
and is nearly finished by graduate school.  Some disciplines within  
the biological sciences do have equivalent or even over−balanced  
representation by women.  Increasing the level of course work in  
mathematics and computer science may be threatening to some of these  
women.  In order to prevent this, specific actions may well be  
necessary.  Similarly, for some students from other  
under−represented groups, it may be necessary to have additional  
courses available at the undergraduate level to improve the level of  
computational competence of entering students.
Appendix 4
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